Main Article Content

Abstract

Drying experiments were conducted on coriander leaves as affected by drying methods (solar greenhouse drying and open sun drying), pretreatments (dipping in a solution of magnesium chloride + sodium bicarbonate + potassium metabisulphite, boiled water blanching containing sodium metabisulphite, and untreated), and loading densities (2.0, 2.5 and 3.0 kg/m2). Validity of three commonly used drying models were examined to predict the most suitable drying model for coriander leaves. The increased drying temperature under solar greenhouse dryer (42°C) increases the amount of moisture removal from the coriander leaves and reduces the drying time by increasing the drying rate as compared to open sun drying (29°C), at all the selected levels of pretreatments and loading densities. Chemically treated coriander leaves dehydrated under a solar greenhouse dryer required less drying time than other treated leaves and dried leaves. Nevertheless, drying methods and loading densities had significant effects, while treatment effects were marginal. It was found that reduction of moisture and moisture removal rate per unit time occurred mostly in the falling rate period except some accelerated removal of moisture at the beginning up to 150 minutes. Page's model was found most appropriate for drying coriander leaves among the selected models.

Keywords

Coriander Solar greenhouse dryer Drying rate Moisture Drying model

Article Details

How to Cite
Singh, S. K. ., Samsher, Singh, B. ., Senger, R., Kumar, P. ., & Amit Kumar Patil. (2021). Drying characteristics and prediction of best fitted drying model for coriander leaves. Environment Conservation Journal, 22(3), 243–251. https://doi.org/10.36953/ECJ.2021.22329

References

  1. Akonor, P. T., & Amankwah, E. A. (2012). Thin layer drying kinetics of solar-dried Amaranthus hybridus and Xanthosoma sagittifolium leaves. DOI: https://doi.org/10.4172/2157-7110.1000174
  2. Akpinar, E. K., Bicer, Y., & Midilli, A. D. N. A. N. (2003). Modeling and experimental study on drying of apple slices in a convective cyclone dryer. Journal of Food Process Engineering, 26(6), 515-541. DOI: https://doi.org/10.1111/j.1745-4530.2003.tb00654.x
  3. Ali, M. L., Yusof, Y. A., Chin, N. L., Ibrahim, M. N., & Basra, S. M. A. (2014). Drying kinetics and colour analysis of moringa oleifera leaves. Agriculture and Agricultural Sciences Procedia, 2, 394-400. DOI: https://doi.org/10.1016/j.aaspro.2014.11.055
  4. Bhat, S., Kaushal, P., Kaur, M., & Sharma, H. K. (2014). Coriander (Coriandrum Sativum L.): Processing, nutritional and functional aspects. African Journal of Plant Science 8(1), 25-33. DOI: https://doi.org/10.5897/AJPS2013.1118
  5. Bruce, D. M. (1985). Exposed-layer barley drying: three models fitted to new data up to 150 C. Journal of Agricultural Engineering Research, 32(4), 337-348. DOI: https://doi.org/10.1016/0021-8634(85)90098-8
  6. Doymaz, I. (2004). Convective air drying characteristics of thin layer carrots. Journal of food engineering, 61(3), 359-364. DOI: https://doi.org/10.1016/S0260-8774(03)00142-0
  7. El-Sebaii, A. A., & Shalaby, S. M. (2012). Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews, 16(1), 37-43. DOI: https://doi.org/10.1016/j.rser.2011.07.134
  8. Garg, M., Sharma, S., Varmani, S. G., & Sadhu, S. D. (2014). Drying kinetics of thin layer pea pods using tray drying. Ínternational Journal of food and nutritional Sciences, 3(3), 61.
  9. Gogus, F., & Maskan, M. (1999). Water adsorption and drying characteristics of okra (Hibiscus esculentus L.). Drying technology. DOI: https://doi.org/10.1080/07373939908917576
  10. Hallstrom, B., Gekas, V., Sjoholm, I., & Romulus, A.M. (2006). Mass transfer in food, In: Handbook of Food Engineering, Heldman DR, Lund DB (Eds). CRC Press, Taylor and Francis Group. DOI: https://doi.org/10.1201/9781420014372.ch7
  11. Jain, R. K., Srivastav, A., & Das, H. (2000). Dehydration characteristics of spinach in air recirculatory tray dryer. Journal of Agricultural Engineering, 37(3), 33-39.
  12. Kaur, P., Kumar, A., Arora, S., & Ghuman, B. S. (2006). Quality of dried coriander leaves as affected by pretreatments and method of drying. European Food Research and Technology 223, 189-194. DOI: https://doi.org/10.1007/s00217-005-0164-1
  13. Kaya, A., Aydin, O., & Demirta, C. (2007). Drying kinetics of red delicious apple. Biosystem Engineering, 96, 517-524. DOI: https://doi.org/10.1016/j.biosystemseng.2006.12.009
  14. Kumar, N., Sarkar, B. C., & Sharma, H. K. (2011). Effect of air velocity on kinetics of thin layer carrot pomace drying. Food Science Technology International, 17, 439-447. DOI: https://doi.org/10.1177/1082013211398832
  15. Lahsasni, S., Kouhila, M., Mahrouz, M., & Jaouhari, J. T., (2004). Drying kinetics of prickly pear fruit (Opuntia ficus indica). Journal of Food Engineering, 61, 173-179. DOI: https://doi.org/10.1016/S0260-8774(03)00084-0
  16. Lyons, D. W., Hatcher, J. D., & Suderland, J. E. (1972). Drying of a porous medium with internal heat generation. International Journal of Heat and Mass Transfer, 15, 897-905. DOI: https://doi.org/10.1016/0017-9310(72)90229-3
  17. Oliveira, S. M., Brandao, T. R. S., & Silva, C. L. M. (2016). Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: A review: Food Engineering Rev, 8, 134-163. DOI: https://doi.org/10.1007/s12393-015-9124-0
  18. Pande, V. K., Philip, S. K., & Sonune, A. V. (2000). Solar drying of coriander and methi leaves. Journal of Food Science and Technology, 37(6), 592-595.
  19. Pati, G. D., Pardeshi, I. L., & Shinde. (2015). Drying of green leafy vegetables using microwave oven dryer. Journal of Ready to Eat Food, 2(1), 18-26.
  20. Ranganna, S. (1986). Handbook of analysis and quality control for fruits and vegetable products. Tata McGraw-Hill Publishing Ltd. New Delhi, 1112.
  21. Rosello, C., Simal, S., Sanjuan, N., & Mulet, A. (1997). Non-isotropic mass transfer model for green bean drying. Journal of Agriculture and Food Chemistry, 45, 337-342. DOI: https://doi.org/10.1021/jf960534c
  22. Sarimeseli, A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52(2), 1449-1453. DOI: https://doi.org/10.1016/j.enconman.2010.10.007
  23. Sehedlou, S., Ghasemzadeh, H. R., Hamdsmi, N., Talati, F., & Moghaddm, M. (2010). Convective drying of apple: Mathematical modeling and determination of some quality parameters. International Journal of Agriculture Biology, 12, 2010.
  24. Singh, S. K., Pathak, P. K., Dwivedi, P. N., & Sahay, C. S. (2017). Drying characteristics of berseem in a solar dryer with supplemental heating system. Range Management and Agroforestry, 38(1), 143-146.
  25. Singh, S. K., Samsher, Singh B. R., Sengar, R. S., & Kumar, P. (2020a). Study on biochemical properties of dehydrated coriander leaves at different drying conditions. International Journal of Chemical Studies, 8(4), 2348-2352 DOI: https://doi.org/10.22271/chemi.2020.v8.i4aa.9984
  26. Singh, S. K., Samsher, Singh B. R., Sengar, R. S., & Kumar, P. (2020b).. Sensory characteristics of dehydrated coriander leaves under greenhouse type solar dryer and its qualitative evaluation during storage. Int. J. of Current Microbiology and Applied Sciences, 9(08), 1133-1142. DOI: https://doi.org/10.20546/ijcmas.2020.908.125
  27. Singh, S. K., Samsher, Singh, B. R. (2020c). Techno-economic viability of solar greenhouse dryer in arid and semi arid regions of India. Multilogic in Science, 10(35),1146-1150.
  28. Singh, U., Sagar V. R., Behera, T. K., & Kumar, S. (2006). Effect of drying conditions on the quality of dehydrated selected leafy vegetables. Journal of Food Science & Technology, 43(6), 579-582.
  29. Wankhade, P. K., Sapkal, R. S., & Sapkal, V. S. (2013). Drying characteristics of okra slices on drying in hot air dryer. Procedia Engineering, 51, 371-374. DOI: https://doi.org/10.1016/j.proeng.2013.01.051