Main Article Content

Abstract

Assessment of organic carbon fractions in soil provides the basis to ascertain vulnerability of an ecosystem to climate change. In the present study, we assessed SOC fractions in four pedons under contrasting landforms i.e., denudational low hill, upper plateau, lower plateau and valley in the Meghalaya plateau, India. Results indicated that soils of the studied pedons were acidic in nature, low in cation exchange capacity and base saturation. Further, surface (0-30 cm) soils were high in Walkley Black C (WBC) content (0.83-1.13%) in the studied pedons located under different landforms. The density of very labile carbon (VLC) fraction up to a depth of 150 cm was highest (49.22 Mg ha?1) in pedon 2 (P2) located in the upper plateau under shifting cultivation while that of less labile carbon (LLC) was highest (50.25 Mg ha?1) in pedon 4 (P4) in the valley under paddy cultivation. Higher densities of WBC and LLC in the valley (P4) as compared to other landforms in the study area indicate higher carbon sequestration potential of valley soil.

Keywords

Carbon density, Landforms, Organic carbon fractions, Soil organic carbon

Article Details

How to Cite
Mourya, K. K. ., Jena, R. K. ., Ray, P. ., Ramachandran, S. ., Sharma, G. K. ., Hota, S. ., & Ray, S. K. . (2021). Profile distribution of soil organic carbon fractions under different landforms in the Meghalaya plateau of India. Environment Conservation Journal, 22(3), 9–16. https://doi.org/10.36953/ECJ.2021.22302

References

  1. Bandyopadhyay, S., Ray, P., Padua, S., Ramachandran, S., Jena, R. K., Roy, P. D., ... & Ray, S. K. (2018). Priority Zoning of Available Micronutrients in the Soils of Agro-ecological Sub-regions of North-East India Using Geo-spatial Techniques. Agricultural research, 7(2), 200-214. DOI: https://doi.org/10.1007/s40003-018-0327-5
  2. Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Mandal, C., & Telpande, B. (2008). Soil carbon storage capacity as a tool to prioritize areas for carbon sequestration. Current science, 482-494.
  3. Bhattacharyya, T., Pal, D. K., Mandal, C., & Velayutham, M. (2000). Organic carbon stock in Indian soils and their geographical distribution. Current Science, 655-660.
  4. Bhattacharyya, T., Sarkar, D., Pal, D. K., Mandal, C., Baruah, U., Telpande, B., & Vaidya, P. H. (2010). Soil information system for resource management—Tripura as a case study. Current Science, 1208-1217.
  5. Blake, G. R., & Hartge, K. H. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375. DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c13
  6. Chan, K. Y., Bowman, A., & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science, 166(1), 61-67. DOI: https://doi.org/10.1097/00010694-200101000-00009
  7. Choudhury, B. U., Fiyaz, A. R., Mohapatra, K. P., & Ngachan, S. (2016). Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North?Eastern Himalayan Region of India. Land Degradation & Development, 27(4), 1163-1174. DOI: https://doi.org/10.1002/ldr.2338
  8. Choudhury, B. U., Mohapatra, K. P., Das, A., Das, P. T., Nongkhlaw, L., Fiyaz, R. A., ... & Munda, G. C. (2013). Spatial variability in distribution of organic carbon stocks in the soils of North East India. Current Science, 604-614.
  9. Datta, A., Basak, N., Chaudhari, S. K., & Sharma, D. K. (2015). Soil properties and organic carbon distribution under different land uses in reclaimed sodic soils of North-West India. Geoderma Regional, 4, 134-146. DOI: https://doi.org/10.1016/j.geodrs.2015.01.006
  10. Dhillon, R. S., & von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass and bioenergy, 48, 75-89. DOI: https://doi.org/10.1016/j.biombioe.2012.11.005
  11. Doetterl, S., Six, J., Van Wesemael, B., & Van Oost, K. (2012). Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Global Change Biology, 18(7), 2218-2232. DOI: https://doi.org/10.1111/j.1365-2486.2012.02680.x
  12. Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35(1), 167-176. DOI: https://doi.org/10.1016/S0038-0717(02)00251-1
  13. Fissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M., & Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140-149. DOI: https://doi.org/10.1016/j.catena.2016.09.016
  14. Ghosh, A., Das, A., Das, D., Ray, P., Bhattacharyya, R., Biswas, D. R., & Biswas, S. S. (2020). Contrasting land use systems and soil organic matter quality and temperature sensitivity in North Eastern India. Soil and Tillage Research, 199, 104573. DOI: https://doi.org/10.1016/j.still.2020.104573
  15. Gregorich, E. G., Beare, M. H., Stoklas, U., & St-Georges, P. (2003). Biodegradability of soluble organic matter in maize-cropped soils. Geoderma, 113(3-4), 237-252. DOI: https://doi.org/10.1016/S0016-7061(02)00363-4
  16. Gupta, R. K., & Rao, D. L. N. (1994). Potential of wastelands for sequestering carbon by reforestation. Current science, 378-380. DOI: https://doi.org/10.1111/j.1949-8594.1994.tb15698.x
  17. Jackson, M. L. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India, 498, 151-154.
  18. Jena, R. K., Duraisami, V. P., Sivasamy, R., Shanmugasundaram, R., Krishnan, R., Padua, S., & Ray, S. K. (2015). Spatial variability of soil fertility parameters in Jirang Block of Ri-Bhoi District, Meghalaya.
  19. Jena, R. K., Duraisami, V. P., Sivasamy, R., Shanmugasundaram, R., Krishnan, R., Padua, S., & Ray, S. K. (2016). Characterization and classification of soils of Jirang block in Meghalaya plateau.
  20. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological applications, 10(2), 423-436. DOI: https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  21. Kukal, S. S., & Bawa, S. S. (2014). Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas. Land Degradation & Development, 25(5), 407-416. DOI: https://doi.org/10.1002/ldr.2151
  22. Lal, R. (2008). Soils and sustainable agriculture. A review. Agronomy for Sustainable Development, 28(1), 57-64. DOI: https://doi.org/10.1051/agro:2007025
  23. Liu, J., Wang, Z., Hu, F., Xu, C., Ma, R., & Zhao, S. (2020). Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena, 190, 104526. DOI: https://doi.org/10.1016/j.catena.2020.104526
  24. Majumder, B., Mandal, B., & Bandyopadhyay, P. K. (2008). Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice–berseem agroecosystem. Biology and Fertility of Soils, 44(3), 451-461. DOI: https://doi.org/10.1007/s00374-007-0226-6
  25. McLauchlan, K. K., & Hobbie, S. E. (2004). Comparison of labile soil organic matter fractionation techniques. Soil Science Society of America Journal, 68(5), 1616-1625. DOI: https://doi.org/10.2136/sssaj2004.1616
  26. Pandey, C. B., Singh, G. B., Singh, S. K., & Singh, R. K. (2010). Soil nitrogen and microbial biomass carbon dynamics in native forests and derived agricultural land uses in a humid tropical climate of India. Plant and Soil, 333(1), 453-467. DOI: https://doi.org/10.1007/s11104-010-0362-x
  27. Paul, E. A., Collins, H. P., & Leavitt, S. W. (2001). Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma, 104(3-4), 239-256. DOI: https://doi.org/10.1016/S0016-7061(01)00083-0
  28. Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., & Nieder, R. (2018). Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils–A comprehensive method comparison. Soil Biology and Biochemistry, 125, 10-26. DOI: https://doi.org/10.1016/j.soilbio.2018.06.025
  29. Powlson, D. S., Whitmore, A. P., & Goulding, K. W. (2011). Soil carbon sequestration to mitigate climate change: a critical re?examination to identify the true and the false. European Journal of Soil Science, 62(1), 42-55. DOI: https://doi.org/10.1111/j.1365-2389.2010.01342.x
  30. Ray, P., Chattaraj, S., Bandyopadhyay, S., Jena, R. K., Singh, S. K., & Ray, S. K.(2021a) Shifting cultivation, soil degradation and agricultural land use planning in the North?eastern hill region of India using geo?spatial techniques. Land Degradation & Development. DOI: https://doi.org/10.1002/ldr.3986
  31. Ray, P., Gogoi, S. N., Bandyopadhyay, S., Jena, R. K., Ramachandran, S., Sharma, G. K., & Ray, S. K. (2021b). Soil-cum-nutrient management package for achieving high yield and quality of mulberry (Morus indica L.) leaf in acid soil of North Eastern India. Journal of Plant Nutrition, 1-13. DOI: https://doi.org/10.1080/01904167.2021.1921196
  32. Reza, S. K., Baruah, U., Nath, D. J., Sarkar, D., & Gogoi, D. (2014). Microbial biomass and enzyme activity in relation to shifting cultivation and horticultural practices in humid subtropical North-Eastern India.
  33. Reza, S. K., Ray, P., Ramachandran, S., Bandyopadhyay, S., Mukhopadhyay, S., Sah, K. D., ... & Ray, S. K. (2019). Profile distribution of soil organic carbon in major land use systems in Bishalgarh block, Tripura. Journal of the Indian Society of Soil Science, 67(2), 236-239. DOI: https://doi.org/10.5958/0974-0228.2019.00026.4
  34. Reza, S. K., Ray, P., Ramachandran, S., Jena, R. K., Mukhopadhyay, S., & Ray, S. K. (2020). Soil Organic Carbon Fractions in Major Land Use Systems in Charilam Block of Tripura. Journal of the Indian Society of Soil Science, 68(4), 458-461. DOI: https://doi.org/10.5958/0974-0228.2020.00037.7
  35. Sahrawat, K. L. (2004). Organic matter accumulation in submerged soils. Advances in Agronomy, 81, 169-201. DOI: https://doi.org/10.1016/S0065-2113(03)81004-0
  36. Sarkar, D., Baruah, U., Gangopadhyay, S. K., Sahoo, A. K., & Velayutham, M. (2002). Characteristics and classification of soils of Loktak catchment area of Manipur for sustainable land use planning. Journal of the Indian Society of Soil Science, 50(2), 196-204.
  37. Singh, I. S., & Agrawal, H. P. (2005). Characterization, genesis and classification of rice soils of eastern region of Varanasi, Uttar Pradesh. Agropedology, 15(1), 29-38.
  38. Singh, M., Sarkar, B., Sarkar, S., Churchman, J., Bolan, N., Mandal, S., ... & Beerling, D. J. (2018). Stabilization of soil organic carbon as influenced by clay mineralogy. Advances in agronomy, 148, 33-84. DOI: https://doi.org/10.1016/bs.agron.2017.11.001
  39. Singh, P., & Benbi, D. K. (2018). Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena, 166, 171-180. DOI: https://doi.org/10.1016/j.catena.2018.04.006
  40. Singh, S. K., Pandey, C. B., Sidhu, G. S., Sarkar, D., & Sagar, R. (2011). Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena, 87(1), 78-89. DOI: https://doi.org/10.1016/j.catena.2011.05.008
  41. Smith, P., Fang, C., Dawson, J. J., & Moncrieff, J. B. (2008). Impact of global warming on soil organic carbon. Advances in agronomy, 97, 1-43. DOI: https://doi.org/10.1016/S0065-2113(07)00001-6
  42. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. DOI: https://doi.org/10.1097/00010694-193401000-00003
  43. Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., & Samson-Liebig, S. E. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18(1), 3-17. DOI: https://doi.org/10.1079/AJAA2003003