Main Article Content

Abstract

In the present study investigation on impact of treated and partially treated industrial effluents on soil and agriculture produce has been carried out. The study find out that parameters  (pH, TSS, TDS, BOD, COD, Chloride, Sulphate, Zn, Cu, Pb, Ni, Cr, Cd) of channel water of sampling station-I (8.12, 404 mgl-1, 2624 mgl-1, 122 mgl-1, 331.45 mgl-1, 808 mgl-1, 32.4 mgl-1 , 0.36 mgl-1 , 0.05 mgl-1, 0.03 mgl-1, 0.04 mgl-1, 4.55 mgl-1, 0.03 mgl-1) was higher than station-II (7.82, 215 mgl-1, 1737 mgl-1, 105 mgl-1, 265 mgl-1, 788 mgl-1, 29.7 mgl-1 , 0.31 mgl-1, 0.04 mgl-1, 0.03 mgl-1, 0.03 4.12 mgl-1, 0.02 mgl-1) . Waste water quality of stations I and II meet to exceed the Indian standard (IS: 2490) for BOD- 30 mgl-1, COD-250 mgl-1 and Cr- 2 mgl-1 for safe disposal of effluents into the surface water.  During the course of study soil and agricultural produce has been collected from irrigation of treated or partial treated industrial effluent and analyzed for trace elements i.e. Fe, Zn, Cu, Pb, Ni, Cr and Cd. The trace elements showed different enrichment factor for soil as Cd 8.75(max), Cr 8.6, Zn 5.73, Ni 4.08, Fe 3.16, Cu 2.41, Pb 1.58(min). For plant samples collected at polluted site showed different enrichment factor of trace elements - 6.87 (Cr)> 6.04 (Zn)> 3.34 (Pb)> 3.05 (Cu)> 2.78 (Fe)> 2.30 (Ni)> BDL (Cd). The levels of trace elements concentration in spinach (max) (Fe821, Zn145, Cu19.84, Pb 18.04, Ni 10.1, Cr38.32, Cd0.88 µg/g) and in wheat (min) (Fe326, Zn102, Cu8.23, Pb 12.6, Ni 5.9, Cr21.5, Cd0.21 µg/g) grown on polluted soil were found more than the reference value of control sites in spinach (Fe257, Zn25, Cu6.98, Pb7.43, Ni4.13, Cr5.6, Cd BDL) , which may create chronic health problem to living being through food chain . The highest enrichment factor of agricultural produce (Efp- Fe-2.78,Zn-6.04,Cu-3.05,Pb-3.34,Ni-2.3,Cr-6.87,Cd-0) was found for the element of Cr and for soil, the highest enrichment factor (Efs- - Fe-3.16,Zn-5.73,Cu-2.41,Pb-1.58,Ni-4.08,Cr-8.6,Cd-8.75) was found for element of Cd respectively. 

Keywords

agriculture produce effluent, enrichment factor pollution soil trace elements

Article Details

How to Cite
Mishra, R. . ., Tripathi, S. K. . ., Mishra , A. K. ., Mishra, A. . ., & Barman, S. (2014). Impact of trace elements pollution of treated industrial effluent and its effect on soil and agriculture produce. Environment Conservation Journal, 15(3), 157–164. https://doi.org/10.36953/ECJ.2014.15325

References

  1. Abdel-Sahab, I., Sehwab, A.P., Banks, M.K. and Hetrich, B.A. 1994. Chemical Characterization of heavy metals contaminated soil in south-east Kasas. Water Air SoilPollut., 78: 73-82.
  2. Akinola, M.O. and Ekiyoyo, T.A. 2006.Accumulation of lead, cadmium and chromium in some plants cultivated along the bank or river Ribila at Odo-nla area of lkorody, Lagos state, Nigeria.J. Environ. Bio., 27: 597-599.
  3. APHA 2005.Standard methods for the examination of water and wastewater. 21thed.,American Public Health Association, American Water Works Association, Water Environmental Federation, Washington, D.C.
  4. Boularbh, A., Schwartz, C., Bitton, G. and .Morel, J.L. 2006. Heavy metal contamination from mining sites in south Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere,63 : 802-810.
  5. Barnhart, J. 1997. Occurrence, uses and properties of chromium.Regul.Toxicol.Pharmacol. 26: 53-57.
  6. Barman, S.C. and Lal, M.M. 1994. Accumulation of heavy metals (Zn, Cu, Cd and Pb) in soil And cultivated vegetables and weed grown in industrially polluted fields. J. Environ. Biol. 15(2): 107-115
  7. Barman, S.C., Kisku, G.C., Salve, P. R., Misra, D., Sahu, R.K., Ramteke, P.W.andBhargava S.K. 2001. Assessment of industrial effluent and its impact on soil and plants.J. Environ. Biol. 22(4): 251-256.
  8. Cieslak-Gollonka, M. 1995.‘Toxic and mutagenic effects of chromium (VI). A review’, Polyhedron. 15:3667-3689.
  9. Cohen, M.D., Kargascin, B., Klein, G.B. and Costa, M. 1993. ‘Mechanism of chromium carcinogenicity and toxicity’, Crit. Rev. Toxicol. 23: 255-268.
  10. De, A.K.,Sen , A.K., and Modak, D.P. 1980. ‘ Some industrial effluents in Durgapur and their impact on the Damodar river’, Environ. Inter. 4:101-105.
  11. De, A.K.,Sen , A.K., Karim, R., Irgolic,J., Chakraborty, D., and Stockton, R. A. 1985. ‘Pollution profile of Damodarriver sediment in Raniganj Industrial belt, West Bengal, India.’,Environ. Inter.11:453-458.
  12. Farooq, M., Hans, R. K., Viswanathan, P.N. and Joshi, P.C. 1999.‘Health hazard from dry river bed agriculture’, Bull.Environ.Contam. Toxicol.62:555-562.
  13. Gothberg, A., Greger, M. and Bengtsson, B.E.2002. Accumulation of`heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bankok region, Thailand. Environ ToxicolChem 21: 1934–1939.
  14. Greger, M. and Lofstedt, M. 2004.Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat.Crop. Sci. 44: 501-507.
  15. Hooda, Vinita. 2007. Phytoremedation of toxic metals from soil and waste water.,J. Environ. Biol. 28: 267-376. 2490.1981. Tolerance limits for industrial effluents discharged into the inland surface waters.
  16. Kannan, V., Ramesh, R. and Kumar, C.S. 2005. Study on ground water characteristics and the effect of discharge effluents from textile unit a Karur District. J. Enviro. Bio. 26: 269-272.
  17. Karagul, R., Samandar, A., Yilmaz, M., Altun, L. andGedikle, R. 2005. Evaluating the seasonal changes of some water quality parameters of the BuyukMelen river Basin (Duzce, Turkey). J. Environ. Biol. 26: 179-185.
  18. Khwaja, A.R., Singh, R. and Tandon, S.N. 2001. Monitoring of Ganga water and sediments vis-à-vis tannery pollution at Kanpur (India): A case study, Environ.Moni Assess. 68 (1): 19-35.
  19. Kisku, G.C., Barman, S.C. andBhargava, S.K. 2000. Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water Air Soil Pollut. 120: 121-137.
  20. Kolay, A.K. 2000.Basic Concepts of Soil Science, 2ndEdn.New Age International (P) Limited, Publishers, NewDelhi.
  21. Kotas, J. and Stasicka, Z. 2000. Chromium occurrence in the environment and methods of its speciation, Environ.Pollut. 107: 263-283.
  22. Li, Y.M., Chaney, R.L., Brewer, E.P., Angle, J. S. and Nelkin, J. 2003. Phytoremediation of nickel and cobalt by hyper accumulator Alyssum species grown on nickel-contaminated soils.Environ. Sci. Technol. 37: 1463-1468.
  23. Malaviya, Piyush and Rathore, V.S. 2007. Seasonal variations in different physico- chemical parameters of the effluents of century pulp and paper mill.Lalkuan, Uttarakhand. J. Enviro. Biol. 28: 219-224.
  24. Memon, A.R., Aktoprakligil, D., Ozdemir, A.andVertil, A. 2001. Heavy metal accumulation and mechanisms in plants. Turk. J. Bot. 25: 111-121.
  25. Mishra, V. and Pandey, S.D. 2005. Immobilizationof heavy metals in contaminated soil using non-humous soil and hydroxyapetitle. Bull. Environ. Contam. Toxicol. 74: 725-731.
  26. Nath, K., Saini, S. and Sharma, Y.K. 2005. Chromium in tannery industry effluent and its effect on plant metabolism and growth.J. Environ. Biol.26: 197-204.
  27. Nielsen, F. H., 1998. Ultra trace element in nutrition. Current knowledge and speculation, J. Trace Elements Exp. Med. 11: 251-274.
  28. Nriagu, J. O., 1988. A silent epidemic of environmental metal poisoning ,Environ. Pollut.50: 139-161.
  29. Raj, E.M., Sankaran, D.P., Sreenath, S.K., Kumaran, S.and Mohan, N. 1996. Studies on treated effluent characteristics of a few tanneries at Crompet, Madras. Indian, J. Environ. Protect. 16: 252-254.
  30. Ray, M., Barman, S.C. and Khan, S. 1988. Heavy metal accumulation in rice plants: Adaption to environmental stress and consequent public health risk. In :Qzturk MA (ed) Plants and pollutants in developed and developing countries, Proc. Inter. Symp. Izmir, Turkey, 421-441.
  31. Ray, M. and Banerjee, S. 1983. Impact of water contaminated with various industrial pollutants on rice cultivation. J. IPHE, India. 1: 1-7.
  32. Sahu, R.K., Kitiyar, S., Tiwari, Jaya and Kisku,G. C. 2007. ‘Assessment of drain water receiving effluent from tanneries and its impact on soil and plants with particular emphasis on bioaccumulation of heavy metals.’J. Environ. Biol. 28(3): 685-690.
  33. Singh, Anil K., Misra, Poonam and Tandon, P.K. 2006.Phytotoxicity of chromium in paddy (Oryza sativa L.) plants.J. Environ. Biol. 27: 283-283.
  34. Singh, S., Sinha, S. 2004a. Morphoanatomical response of two cultivars of Brassica juncea (L.)Czern Grown Tannery waste amended soil, Bull. Environ. Contam.Toxicol. 72: 1017-1024.
  35. Sinha, S., Pandey, K., Gupta, A.K. and Bhatt, K., 2005. Accumulation of metals in vegetables and crops grown in the area irrigated with river water. Bull Environ ContamToxicol. 74: 210–218.
  36. Sinha, S., Gupta, A.K., Bhatt, K., Pandey, K., Rai, U.N. and Singh, K.P. 2006. Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physico-chemical properties of the soil. Environ Monit Assess115: 1–22.
  37. Temmerman, L. O., Hoenig, M. and Scokart, P.O. 1984.Determination of “normal” levels and upper limit values of trace elements in soil, Z. Pflanzenernahr.Bodenkd. 147: 687-694.
  38. Voutsa, D., Grimanis, A. and Samara, C. 1996. ‘Trace elements in vegetables grown in an industrial area in relation to soil and air particular matter’,Chemosphere. 94: 325-335.