Main Article Content

Abstract

The amount of suspended solid and medicinal micropollutants, such as fungicides, personal care products, contraceptive medications, antibiotics and aromatic hydrocarbons are increasing daily and has reached an alarming level. The micropollutant present in wastewater must be treated before its release because it forms adverse effect on mortal health. Because some harmful micropollutants are incredibly difficult to remove from WWTPs because of their nonbiodegradability, poor adsorption capability, complex nature and traditional wastewater treatments are precious or insufficient for decontamination. For the micropollutant declination some of the conventional physicochemical has been used.  The use of powdered activated carbon (PAC) for water purification has been proven to be effective without harming the environment.  Advanced oxidation technologies (AOTs), typically applied after natural processes have recently emerged as effective tertiary treatments for the withdrawal of micropollutants at high concentrations. Various methods have been developed and studied for the removal of these micropollutants from wastewater. This review aims to provide a comprehensive overview of the different methods employed, including physical, chemical, and biological processes, highlighting their effectiveness and limitations in micropollutant removal. As well as improving treatment efficiency, they can also remove any accumulation of dangerous byproducts produced during treatment.

Keywords

Advanced oxidation technology Biological methods Micro pollutant Powdered activated carbon Wastewater

Article Details

How to Cite
Thakre, M. B., Kapoor , S. B., & Gandhare, N. (2024). Methods for eliminating micropollutant from wastewater: A review. Environment Conservation Journal, 25(1), 267–273. https://doi.org/10.36953/ECJ.26652643

References

  1. Ahamad, F., Tyagi, S. K., Singh, M., & Sharma, A. K. (2023). Groundwater in Arid and Semiarid Regions of India: A Review on the Quality, Management and Challenges. Groundwater in Arid and Semi-Arid Areas: Monitoring, Assessment, Modeling, and Management, 11-52. DOI: https://doi.org/10.1007/978-3-031-43348-1_2
  2. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater. ;323:274–98. DOI: https://doi.org/10.1016/j.jhazmat.2016.04.045
  3. Aschermann, G., Zietzschmann, F. & Jekel, M. (2018). Influence of dissolved organic matter and activated carbon pore characteristics on organic micropollutant desorption. Water Res. 133, 123–131. DOI: https://doi.org/10.1016/j.watres.2018.01.015
  4. Barbosa, M.O., Moreira, N.F., Ribeiro, A.R., Pereira, M.F. & Silva, A.M. (2016). Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res. ;94: 257–79.
  5. Barbosa, M.O., Moreira, N.F.F., Ribeiro, A.R. Pereira, M.F.R. & Silva, A.M.T. (2015). Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495, Water Res. 94 257–279. DOI: https://doi.org/10.1016/j.watres.2016.02.047
  6. Batel, A., Baumann, L., Carteny, C.C., Cormier, B., Keiter, S.H. & Braunbeck, T. (2020). Histological, enzymatic and chemical analyses of the potential effects of differently sized microplastic particles upon long-term ingestion in zebrafish (Danio rerio). Mar. Pollut. Bull. 153, 111022. DOI: https://doi.org/10.1016/j.marpolbul.2020.111022
  7. Benstoem, F., Nahrstedt, A., Boehler, M., Knopp, G., Montag, D., Siegrist, H. & Pinnekamp, J. (2017). Performance of granular activated carbon to remove micropollutants from municipal wastewater-a meta-analysis of pilot-and large scale studies. Chemosphere 185, 105–118. DOI: https://doi.org/10.1016/j.chemosphere.2017.06.118
  8. Bhutiani, R., & Ahamad, F. (2018). Efficiency assessment of Sand Intermittent Filtration Technology for waste water Treatment. International Journal of advance research in science and engineering (IJARSE), 7(03), 503-512.
  9. Bhutiani, R., Ahamad, F., & Ruhela, M. (2021). Effect of composition and depth of filter-bed on the efficiency of Sand-intermittent-filter treating the Industrial wastewater at Haridwar, India. Journal of Applied and Natural Science, 13(1), 88-94. DOI: https://doi.org/10.31018/jans.v13i1.2421
  10. Bhutiani, R., Khanna, D. R., Shubham, K., & Ahamad, F. (2016). Physico-chemical analysis of Sewage water treatment plant at Jagjeetpur Haridwar, Uttarakhand. Environment Conservation Journal, 17(3), 133-142. DOI: https://doi.org/10.36953/ECJ.2016.17326
  11. Bhutiani, R., Pratap, H., Ahamad, F., Kumar, P., & Kaushik, P. D. (2017). Efficiency assessment of effluent treatment plant (ETP) treating an automobile industry effluent (SIDCUL) Haridwar. Environment Conservation Journal, 18(1&2), 95-102. DOI: https://doi.org/10.36953/ECJ.2017.181213
  12. Bhutiani, R., Tiwari, R. C., Chauhan, P., Ahamad, F., Sharma, V. B., Tyagi, I., & Singh, P. (2022). Potential of Cassia fistula pod-based absorbent in remediating water pollutants: An analytical study. In Sustainable Materials for Sensing and Remediation of Noxious Pollutants (pp. 261-272). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-99425-5.00001-3
  13. Boehler, M., Zwickenpflug, B., Hollender, J., Ternes, T., Joss, A. & Siegrist, H. (2012). Removal of micropollutants in municipal wastewater treatment plants by powder activated carbon. Water Sci. Technol. 66, 2115–2121 DOI: https://doi.org/10.2166/wst.2012.353
  14. Chau, H., Kadokami, K., Duong, H., Kong, L., Nguyen, T., Nguyen, T. & Ito, Y. (2018). Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam. Environ. Sci. Pollut. Res. 25, 7147–7156. DOI: https://doi.org/10.1007/s11356-015-5060-z
  15. Choi, Y.J., Kim, LH & Zoh, K.D. (2016). Removal characteristics and mechanism of antibiotics using constructed wetlands. Ecol Eng.; 91: 85–92. DOI: https://doi.org/10.1016/j.ecoleng.2016.01.058
  16. Coday, B.D., Yaffe, B.G., Xu, P. & Cath, T.Y. (2014). Rejection of trace organic compounds by forward osmosis membranes: a literature review. Environ Sci. Technol;48(7):3612–24. DOI: https://doi.org/10.1021/es4038676
  17. Deng, Y. & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep.;1(3):167–76. DOI: https://doi.org/10.1007/s40726-015-0015-z
  18. García-Fernández, I., Fernández-Calderero, I., Polo-López, M.I. & Fernández Ibáñez, P. (2015). Disinfection of urban effluents using solar TiO2 photocatalysis: a study of significance of dissolved oxygen, temperature, type of microorganism and water matrix, Catal. Today, 240, 30–38. DOI: https://doi.org/10.1016/j.cattod.2014.03.026
  19. García-Fernández, I., Miralles-Cuevas, S., Oller, I., Malato, S., Fernández-Ibáñez, P. & Polo-López, M.I. (2018). Inactivation of E. coli and E. faecalis by solar photoFenton with EDDS complex at neutral pH in municipal wastewater effluents, J. Hazard. Mater. DOI: https://doi.org/10.1016/j.jhazmat.2018.07.037
  20. Gautam, K. & Anbumani, S. (2020). Ecotoxicological effects of organic micropollutants on the environment. Current Developments in Biotechnology and Bioengineering 481–501. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-819594-9.00019-X
  21. Gonzalez-Gil, L., Carballa, M., & Lema, J.M. (2017). Cometabolic enzymatic transformation of organic micropollutants under methanogenic conditions. Environ Sci Technol;51(5):2963–71. https://doi.org/10.1021/acs.est.6b05549. DOI: https://doi.org/10.1021/acs.est.6b05549
  22. Guillossou, R., Le Roux, J., Mailler, R., Pereira-Derome, C.S., Varrault, G., Bressy, A., Vulliet, E., Morlay, C., Nauleau, F. & Rocher, V. (2020). Influence of Dissolved Organic Matter on the Removal of 12 Organic Micropollutants from Wastewater Effluent by Powdered Activated Carbon Adsorption. Water Res., p. 115487. DOI: https://doi.org/10.1016/j.watres.2020.115487
  23. Justo, A., González, O., Aceña, J., Pérez, S., Barceló, D. & Sans, C. (2015). Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J Hazard Mater;263:268–74. DOI: https://doi.org/10.1016/j.jhazmat.2013.05.030
  24. Kårelid, V., Larsson, G. & Bjorlenius, B. (2017a). Effects of recirculation in a three-tank ¨ pilot-scale system for pharmaceutical removal with powdered activated carbon. J. Environ. Manag. 193, 163–171. DOI: https://doi.org/10.1016/j.jenvman.2017.01.078
  25. Luo Y., Guo W., Ngo H.H., Nghiem L.D., Hai F.I. & Zhang J. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. ;473:619–41. DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065
  26. Mailler, R., Gasperi, J., Coquet, Y., Derome, C., Bulet´e, A., Vulliet, E., Bressy, A., Varrault, G., Chebbo, G. & Rocher, V. (2016). Removal of emerging micropollutants from wastewater by activated carbon adsorption: experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. Journal of environmental chemical engineering 4, 1102–1109. DOI: https://doi.org/10.1016/j.jece.2016.01.018
  27. Matthiessen P., Arnold D., Johnson A.C., Pepper T.J., Pottinger T.G. & Pulman K.G. (2006). Contamination of headwater streams in the United Kingdom by estrogenic hormones from livestock farms. Sci Total Environ. M ;367(2–3):616–30. DOI: https://doi.org/10.1016/j.scitotenv.2006.02.007
  28. Meza, L.C., Piotrowski, P., Farnan, J., Tasker, T.L., Xiong, B., Weggler, B., Murrell, K., Dorman, F.L., Heuvel, J.P.V. & Burgos, W.D. (2020). Detection and removal of biologically active organic micropollutants from hospital wastewater. Sci. Total Environ. 700, 134469. DOI: https://doi.org/10.1016/j.scitotenv.2019.134469
  29. Michael, I., Hapeshi, E., Osorio, V., Perez, S., Petrovic, M., Zapata, A., Malato, S., Barceló, D. & Fatta-Kassinos, D. (2012). Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation, Sci. Total Environ. 430, 167–173. DOI: https://doi.org/10.1016/j.scitotenv.2012.05.003
  30. Michael-Kordatou, I., Michael, C., Duan, X., He, X., Dionysiou, D.D., Mills, M.A. & Fatta-Kassinos, D. (2015). Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications, Water Res. 77,213–248. DOI: https://doi.org/10.1016/j.watres.2015.03.011
  31. Murínová, S., Dercová, K. & Dudášová, H. (2014). Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. Int Biodeterior Biodegradation.;91:52–9. DOI: https://doi.org/10.1016/j.ibiod.2014.03.011
  32. Noreen, S., Khalid, U., Ibrahim, S.M., Javed, T., Ghani, A., Naz, S. & Iqbal, M. (2020). ZnO, MgO and FeO adsorption efficiencies for direct sky Blue dye: equilibrium, kinetics and thermodynamics studies. Journal of Materials Research and Technology 9, 5881–5893. DOI: https://doi.org/10.1016/j.jmrt.2020.03.115
  33. Pruden, A., Pei, R., Storteboom, H. & Carlson, K.H. (2006). Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol.; 40(23):7445–50. DOI: https://doi.org/10.1021/es060413l
  34. Ribeiro, A.R., Nunes, O.C., Pereira, M.F. & Silva, A.M. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int.;5:33–51. DOI: https://doi.org/10.1016/j.envint.2014.10.027
  35. Song W., Huang M., Rumbeiha W. & Li H. (2007). Determination of amprolium, carbadox, monensin, and tylosin in surface water by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 21(12):1944–50. https://doi.org/10.1002/rcm.3042. DOI: https://doi.org/10.1002/rcm.3042
  36. Sousa, J.C.G., Ribeiro, A.R., Barbosa, M.O., Pereira, M.F.R. & Silva, A.M.T. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines, J. Hazard. Mater. 344 146–162. DOI: https://doi.org/10.1016/j.jhazmat.2017.09.058
  37. Sudhakaran, S., Maeng. S.K. & Amy, G. (2013). Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multibarrier treatment. Chemosphere.; 92(6): 731–7. DOI: https://doi.org/10.1016/j.chemosphere.2013.04.021
  38. Tran, N.H., Urase, T., Ngo, H.H., Hu, J. & Ong, S.L. (2013). Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol ;146:721–31.
  39. Tran, N.H., Urase, T., Ngo, H.H., Hu, J. & Ong, S.L. (2013). Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol. ;146:721–31. DOI: https://doi.org/10.1016/j.biortech.2013.07.083
  40. Umar, M., Roddick, F. & Fan, L. (2015). Recent advancements in the treatment of municipal wastewater reverse osmosis concentrate—an overview. Crit Rev Environ Sci Technol.;45(3): 193–248. DOI: https://doi.org/10.1080/10643389.2013.852378
  41. Villegas, L.G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E. & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Curr Pollut Rep. ;2(3):157–67. DOI: https://doi.org/10.1007/s40726-016-0035-3
  42. Wang, M. & Chen, Y. (2018). Generation and characterization of DOM in wastewater treatment processes, Chemosphere 201, 96–109. DOI: https://doi.org/10.1016/j.chemosphere.2018.02.124
  43. Wong, D.W. (2009). Structure and action mechanism of ligninolytic enzymes. Biotechnol Appl Biochem.; 157 (2): 174–209. DOI: https://doi.org/10.1007/s12010-008-8279-z