Main Article Content

Abstract

The dumping of wastewater containing the dyes is harmful to the health of aquatic living beings. The colour in water bodies reduces the penetration of light and thereby reduces the concentration of dissolved oxygen (DO) of water bodies. The decreased value of DO is also harmful to aquatic organism. Therefore treatment of wastewater containing dyes becomes essential. Mushrooms have proven to be highly efficient and economical for removing pollutants through bioabsorption. Therefore, in the present study an attempt has been made to study the efficiency of Spent Mushroom Waste (SMW) viz. Agaricus bisporus as biosorbent for the biosorption of Basic Fuchsin Dye (BFD) from aqueous solution. The effects of certain factors such as the dose of adsorbent, temperature, exposure time, and pH were studied on the dye degradation by a given biomass of SMW. The results of the present study revealed that the optimum value of temperature, contact time, adsorbent dose, pH, was 7, 20 minutes, 20 mg, and 30˚C respectively. The biosorption efficiency of the used SMW ranged from good to excellent. The results of the present study revealed that the SMW of Agaricus bisporus is an economically and environmentally sound adsorbent and can be used for the degradation of dyes from water based solutions. Further investigation is required to enhance the adsorption rate of SMW of Agaricus bisporus.

Keywords

Pollution Biosorption Basic Fuchsin dye Spent mushroom waste (SMW) Agaricus bisporus Water pollution

Article Details

How to Cite
Chaudhary , N., Kumar, P., Kumar , A., Dayal , S., Rani, A., & Ahamad , F. (2023). Efficiency of spent mushroom (Agaricus Bisporus) waste biomass for the biosorption of basic fuchsin dye from aqueous solution. Environment Conservation Journal, 24(4), 300–309. https://doi.org/10.36953/ECJ.26462769

References

  1. AbuQamar, S. F., Abd El-Fattah, H. I., Nader, M. M., Zaghloul, R. A., Abd El-Mageed, T. A., Selim, S., & El-Saadony, M. T. (2023). Exploiting fungi in bioremediation for cleaning-up emerging pollutants in aquatic ecosystems. Marine Environmental Research, 106068. DOI: https://doi.org/10.1016/j.marenvres.2023.106068
  2. Ahmed, H. A. B., & Ebrahim, S. E. (2020). Removal of methylene blue and congo red dyes by pretreated fungus biomass-equilibrium and kinetic studies. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(2), 84–100.
  3. Alhujaily, A., Yu, H., Zhang, X., & Ma, F. (2018). Highly efficient and sustainable spent mushroom waste adsorbent based on surfactant modification for the removal of toxic dyes. International journal of environmental research and public health, 15(7), 1421. DOI: https://doi.org/10.3390/ijerph15071421
  4. Ali, F., Bibi, S., Ali, N., Ali, Z., Said, A., Wahab, Z. U., ... & Iqbal, H. M. (2020). Sorptive removal of malachite green dye by activated charcoal: Process optimization, kinetic, and thermodynamic evaluation. Case Studies in Chemical and Environmental Engineering, 2, 100025. DOI: https://doi.org/10.1016/j.cscee.2020.100025
  5. Aragaw, T. A., & Bogale, F. M. (2021). Biomass-based adsorbents for removal of dyes from wastewater: a review. Frontiers in Environmental Science, 9, 558. DOI: https://doi.org/10.3389/fenvs.2021.764958
  6. Ayimbila, F., & Keawsompong, S. (2023). Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Current Nutrition Reports, 1-18. DOI: https://doi.org/10.1007/s13668-023-00468-x
  7. Batana, F. Z., Bouras, H. D., & Aouissi, H. (2022). Biosorption Of Congo Red And Basic Fuchsin Using Micro Fungi Fusarium Oxysporum F. Sp. Pisi As A Biosorbent: Modeling Optimization And Kinetics Study. Egyptian Journal of Chemistry, 65(13), 225–235.
  8. Baysal, E., Yigitbasi, O. N., Colak, M., Toker, H., Simsek, H., & Yilmaz, F. (2007). Cultivation of Agaricus bisporus on some compost formulas and locally available casing materials. Part I: Wheat straw based compost formulas and locally available casing materials. Afr. J. Biotechnol. 6(19): 2225-2230. DOI: https://doi.org/10.5897/AJB2007.000-2349
  9. Bhutiani, R., & Ahamad, F. (2018). Efficiency assessment of Sand Intermittent Filtration Technology for waste water Treatment. International Journal of advance research in science and engineering (IJARSE), 7(03), 503-512.
  10. Bhutiani, R., Ahamad, F., & Ruhela, M. (2021). Effect of composition and depth of filter-bed on the efficiency of Sand-intermittent-filter treating the Industrial wastewater at Haridwar, India. Journal of Applied and Natural Science, 13(1), 88-94. DOI: https://doi.org/10.31018/jans.v13i1.2421
  11. Chakraborty, B., Chakraborty, U., Barman, S., & Roy, S. (2016). Effect of different substrates and casing materials on growth and yield of Calocybe indica (P&C) in North Bengal, India. Journal of Applied and Natural Science, 8(2), 683–690. DOI: https://doi.org/10.31018/jans.v8i2.858
  12. Chaurasia, P. K., Nagraj, Sharma, N., Kumari, S., Yadav, M., Singh, S., & Bharati, S. L. (2023). Fungal assisted bio‐treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnology and Bioengineering, 120(1), 57-81. DOI: https://doi.org/10.1002/bit.28268
  13. Chukki, J., & Shanthakumar, S. (2016). Optimization of malachite green dye removal by Chrysanthemum indicum using response surface methodology. Environmental Progress and Sustainable Energy, 35(5), 1415–1419. DOI: https://doi.org/10.1002/ep.12369
  14. Dardouri, S., & Sghaier, J. (2017). Adsorptive removal of methylene blue from aqueous solution using different agricultural wastes as adsorbents. Korean Journal of Chemical Engineering, 34(4), 1037-1043. DOI: https://doi.org/10.1007/s11814-017-0008-2
  15. Del Campo, I., Alegria, I., Otazu, E., Gaffney, D., Iglesias, M., Ihalainen, P., &Perez, M. (2018). Biorescue: Getting high added value products from mushroom compost. In European Biomass Conference and Exhibition Proceedings, pp. 1084–1088. ETA-Florence Renewable Energies.
  16. Doğan, M., Özdemir, Y., & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes and Pigments, 75(3), 701-713. DOI: https://doi.org/10.1016/j.dyepig.2006.07.023
  17. El Haddad, M. (2016). Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics. Journal of Taibah University for Science, 10(5), 664-674. DOI: https://doi.org/10.1016/j.jtusci.2015.08.007
  18. El Haddad, M., Mamouni, R., Saffaj, N., & Lazar, S. (2012). Removal of a cationic dye–Basic Red 12–from aqueous solution by adsorption onto animal bone meal. Journal of the Association of Arab Universities for Basic and Applied Sciences, 12(1), 48-54. DOI: https://doi.org/10.1016/j.jaubas.2012.04.003
  19. Farhan Hanafi, M., & Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. In Materials Today: Proceedings (Vol. 31, pp. A141–A150). Elsevier Ltd. DOI: https://doi.org/10.1016/j.matpr.2021.01.258
  20. Feng, K., Li, H., Cui, J., Dong, Y., Li, S., & Hou, J. (2022). Study on the preparation of MCGA and its adsorption performance and mechanism of organic dyes. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 53(10), 3838–3848.
  21. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(1), 13-28. DOI: https://doi.org/10.1002/jctb.1999
  22. García-Delgado, C., Alonso-Izquierdo, M., González-Izquierdo, M., Yunta, F., & Eymar, E. (2017). Purification of polluted water with spent mushroom (Agaricus bisporus) substrate: from agricultural waste to biosorbent of phenanthrene, Cd and Pb. Environmental Technology (United Kingdom), 38:1792–1799. DOI: https://doi.org/10.1080/09593330.2016.1246614
  23. Hameed, B. H. (2009). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. Journal of hazardous materials, 161(2-3), 753-759. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.019
  24. Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water research, 34(3), 735-742. DOI: https://doi.org/10.1016/S0043-1354(99)00232-8
  25. Ihsanullah, I., Jamal, A., Ilyas, M., Zubair, M., Khan, G., & Atieh, M. A. (2020). Bioremediation of dyes: Current status and prospects. Journal of Water Process Engineering. Elsevier Ltd. DOI: https://doi.org/10.1016/j.jwpe.2020.101680
  26. Islam, M. M., Mohana, A. A., Rahman, M. A., Rahman, M., Naidu, R., & Rahman, M. M. (2023). A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxics, 11(3), 252. DOI: https://doi.org/10.3390/toxics11030252
  27. Kocaoba, S., Orhan, Y., & Akyüz, T. (2007). Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite. Desalination, 214(1-3), 1-10. DOI: https://doi.org/10.1016/j.desal.2006.09.023
  28. Kooli, F., Yan, L., Al-Faze, R., & Al-Sehimi, A. (2015). Removal enhancement of basic blue 41 by brick waste from an aqueous solution. Arabian Journal of Chemistry, 8(3), 333-342. DOI: https://doi.org/10.1016/j.arabjc.2014.04.003
  29. Liu, X., & Lee, D. J. (2021). Corrigendum to “Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters” Bioresour. Technol. 16: 24–31 DOI: https://doi.org/10.1016/j.biortech.2020.124311
  30. Mahmooda, T. (2014). Bioremediation Of Xenobiotics: Use Of Dead Fungal Biomass As Biosorbent. International Journal of Research in Engineering and Technology, 03(01), 565–570. DOI: https://doi.org/10.15623/ijret.2014.0301094
  31. Malekbala, M. R., Hosseini, S., Yazdi, S. K., Soltani, S. M., & Malekbala, M. R. (2012). The study of the potential capability of sugar beet pulp on the removal efficiency of two cationic dyes. Chemical Engineering Research and Design, 90(5), 704-712. DOI: https://doi.org/10.1016/j.cherd.2011.09.010
  32. Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste management, 27(9), 1129-1138. DOI: https://doi.org/10.1016/j.wasman.2006.06.009
  33. Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes and pigments, 69(3), 210-223. DOI: https://doi.org/10.1016/j.dyepig.2005.03.013
  34. Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 264(1-3), 17-28. DOI: https://doi.org/10.1016/j.colsurfa.2005.03.027
  35. Meng, X., Liang, H., & Luo, L. (2016). Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate research, 424, 30-41. DOI: https://doi.org/10.1016/j.carres.2016.02.008
  36. Nethaji, S., Sivasamy, A., Thennarasu, G., & Saravanan, S. (2010). Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass. Journal of hazardous materials, 181(1-3), 271-280. DOI: https://doi.org/10.1016/j.jhazmat.2010.05.008
  37. Okoro, H. K., Pandey, S., Ogunkunle, C. O., Ngila, C. J., Zvinowanda, C., Jimoh, I., ... & Adeniyi, A. G. (2022). Nanomaterial-based biosorbents: Adsorbent for efficient removal of selected organic pollutants from industrial wastewater. Emerging Contaminants, 8, 46-58. DOI: https://doi.org/10.1016/j.emcon.2021.12.005
  38. Qin, K., Li, J., Yang, W., Wang, Z., & Zhang, H. (2023). Role of minerals in mushroom residue on its adsorption capability to Cd (II) from aqueous solution. Chemosphere, 324, 138290. DOI: https://doi.org/10.1016/j.chemosphere.2023.138290
  39. Quimio, T. H., Chang, S. T., & Royse, D. J. (1990). Technical guidelines for mushroom growing in the tropics. F.A.O. Plant Production and Protection, 106, 62–70.
  40. Savoie, J. M., Bruneau, D., & Mamoun, M. (1996). Resource allocation ability of wild isolates of Agaricus bisporus on conventional mushroom compost. FEMS Microbiology Ecology, 21(4), 285–292. DOI: https://doi.org/10.1111/j.1574-6941.1996.tb00125.x
  41. Thakur, M. P., & Singh, H. K. (2013). Mushrooms, their bioactive compounds and medicinal uses: A review. Medicinal Plants. DOI: https://doi.org/10.5958/j.0975-6892.5.1.004
  42. Tian, X., Li, C., Yang, H., Ye, Z., & Xu, H. (2011). Spent mushroom: a new low-cost adsorbent for removal of congo red from aqueous solutions. Desalination and Water Treatment, 27(1-3), 319-326. DOI: https://doi.org/10.5004/dwt.2011.2152
  43. Tong, D. S., Wu, C. W., Adebajo, M. O., Jin, G. C., Yu, W. H., Ji, S. F., & Zhou, C. H. (2018). Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites. Applied Clay Science, 161, 256–264. DOI: https://doi.org/10.1016/j.clay.2018.02.017
  44. Volesky, B. (2001). Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy, 59: 203–216. DOI: https://doi.org/10.1016/S0304-386X(00)00160-2
  45. Vos, A. M., Heijboer, A., Boschker, H. T., Bonnet, B., Lugones, L. G., & Wösten, H. A. (2017). Microbial biomass in compost during colonization of Agaricus bisporus. AMB Express, 7, 1-7. DOI: https://doi.org/10.1186/s13568-016-0304-y
  46. Waktola, G., & Temesgen, T. (2018). Application of mushroom as food and medicine. Adv. Biotechnol. Microbiol, 11(3), 10-19080. DOI: https://doi.org/10.19080/AIBM.2018.11.555817
  47. Wani, B. A., Bodha, R. H., & Wani, A. H. (2010). Nutritional and medicinal importance of mushrooms. Journal of Medicinal plants research, 4(24), 2598-2604. DOI: https://doi.org/10.5897/JMPR09.565
  48. Yamil, Y. L., Georgin, J., dos Reis, G. S., Lima, E. C., Oliveira, M. L. S., Franco, D. S. P., & Dotto, G. L. (2020). Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. Environmental Science and Pollution Research, 27(26), 33307–33320. DOI: https://doi.org/10.1007/s11356-020-09471-z
  49. Yan, T., & Wang, L. (2013). Adsorptive removal of methylene blue from aqueous solution by Spent Mushroom Substrate: Equilibrium, Kinetics, and Thermodynamics. BioResource, 8(3), 4722-4734. DOI: https://doi.org/10.15376/biores.8.3.4722-4734
  50. Yildirim, A., Baran, M. F., & Acay, H. (2020). Kinetic and isotherm investigation into the removal of heavy metals using a fungal- extract- based bio-nano sorbent. Environmental Technology & Innovation, 20, 101076. DOI: https://doi.org/10.1016/j.eti.2020.101076