Main Article Content


Monocropping systems have intensively exploited natural resources in recent decades, and the indiscriminate use of inorganic fertilizers, combined with agro-chemicals, has resulted in the deterioration of natural resources such as soil and water, resulting in the loss of soil fertility. Agroforestry is an ideal scientific strategy for eco-restoration of degraded areas and sustainable resource management when compared to mono cropping systems. It is a land management and farming strategy that aims to not only produce food from marginal agricultural land, but also to significantly improve the quality of the environment and soil. When compared to regular crop removal in a solo cropping system, leaf litters and their breakdown under tree-based vegetation favour nutrients enrichment. The adoption of an agroforestry system resulted in the accumulation of soil organic carbon, increased the availability of macronutrients and micronutrients, and improved the microenvironment for plant growth. As a result, pairing suitable tree species with agricultural crops can contribute in the maintenance or enhancement of soil fertility. Based on these findings, it is advised that farmers adopt agroforestry systems since they have enormous potential to improve soil fertility, leading to increased crop output and food security.


Agroforestry Cropping System Soil organic carbon Nutrient Soil Fertility

Article Details

How to Cite
Pankaj, Bhardwaj, K., Yadav , R., Goyal , V., Sharma , M. K., & Ahlawat, K. (2023). Role of agroforestry systems in enrichment of soil organic carbon and nutrients: A review. Environment Conservation Journal, 25(1), 289–296.


  1. Akpan, S. B., Udoh, E. J., & Nkanta, V. S. (2012). Factors influencing fertilizer use intensity among small holder crop farmers in Abak Agricultural Zone in Akwa Ibom State, Nigeria. Journal of Biology, Agriculture and Healthcare, 2(1), 54-66.
  2. Allen, S. C., Jose, S., Nair, P. K. R., Brecke, B. J., Nkedi-Kizza, P., & Ramsey, C. L. (2004). Safety-net role of tree roots, evidence from a pecan (Carya illinoensis K.Koch)-cotton (Gossypium hirsutum L.) alleycropping system in the southern United States. Forest Ecology and Management, 192, 395-407. DOI:
  3. Aluko, A. P., &Fagbenro, J. A. (2000). The role of tree species and land use systems in organic matter and nutrient availability in degraded Ultisol of Onne, Southeastern Nigeria. Procurement Annual Conference of Soil Science Society of Nigeria; Ibadan, Oyo State; pp 289-92.
  4. Arora, R., Sharma, V., Sharma, S., Maini, A., & Dhaliwal, S. S. (2021). Temporal changes in soil biochemical properties with seasons under rainfed land use systems in Shiwalik foothills of northwest India. Agroforestery Systems, 95(8), 1479-91. DOI:
  5. Bhutiani, R., & Ahamad, F. (2019). A case study on changing pattern of agriculture and related factors at Najibabad region of Bijnor, India. Contaminants in Agriculture and Environment: Health Risks and Remediation, 1, 236. DOI:
  6. Blanco, J., Sourdril, A., Deconchat, M., Barnaud, C., San Cristobal, M., & Andrieu, É. (2020). How farmers feel about trees, perceptions of ecosystem services and disservices associated with rural forests in southwestern France. Ecosystem Services, 42, 101066. DOI:
  7. Barrios, E., Valencia, V., Jonsson, M., Brauman, A., Hairiah, K., Mortimer, P. E., & Okubo, S. (2018). Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services & Management, 14(1), 1-16. DOI:
  8. Bonanomi, G., Filippis, F.D., Zotti, M., Idbella, M., Cesarano, G., Al-Rowaily, S., & Abd-ElGawad, A. (2020). Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Applied Soil Ecology, 156, 103714. DOI:
  9. Chaudhari, S. K., Kumar, P., Singh, K., Mishra, A. K., Rai, P., Singh, R., & Sharma, D. K. (2014). Aggregate fractions and organic carbon dynamics in partially reclaimed sodic soils growing Eucalyptus tereticornis. Journal of Soil Salinity and Water Quality, 6, 96-100.
  10. Chauhan, S. K. (2012) Performance of poplar (Populus deltoides) and its effect on wheat yield under agroforestry system in irrigated agro-ecosystem, India. Caspian Journal of Environmental Science,10(1), 53-60.
  11. Dhaliwal, S. S., & Walia, S. S. (2008) Integrated nutrient management for sustaining maximum productivity of rice - wheat system under Punjab conditions. Agricultural Research Journal, 45(2), 12-16.
  12. Dinesha, S., & Dey, A.N. (2023) Litter decomposition and nutrient release dynamics under Swietenia macrophylla King plantation in the Indian sub-Himalayan region. Agroforestry Systems. DOI:
  13. Doran, J. W. (2002). Quality &sustainable agriculture. In ‘Encyclopedia of Soil Science’ (eds.), New York, pp 1088-91.
  14. Garcia, D. A., Bienes, R., Sastre, B., Novara, A., Gristina, L., & Cerda, A. (2017). Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems and Environment, 236, 256-67. DOI:
  15. Guo, J., Wang, B., Wang, G., Wu, Y., & Cao, F. (2018). Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China. Catena, 171, 450-59. DOI:
  16. Henao, J., &Baanate, C. A. (1999). Nutrient depletion in the agricultural soils of Africa. 2020 Vision, No. 62 IFPRI.
  17. Isaac, M. E., Timmer, V. R., & Quashie-Sam, S. (2007). Shade tree effects in an 8-year-old cocoa agroforestry system, biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutrient Cycling in Agroecosystems, 78, 155-65. DOI:
  18. Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-36. DOI:[0423:TVDOSO]2.0.CO;2
  19. Jusoh, M. L. C., Manaf, L. A., & Latiff, P. A. (2013). Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Journal of Environmental Health Science and Engineering, 10, 1-9. DOI:
  20. Kaur, R., Singh, B., & Dhaliwal, S. S. (2020). Dynamics of soil cationic micronutrients in a chronosequence of poplar (Populus deltoides Bartr.)-based agroforestry system in India. Journal of Soil Science and Plant Nutrition, 20(4), 2025-41. DOI:
  21. Kell, D. B. (2012). Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems, why and how. Biological Sciences, 367, 1589-97. DOI:
  22. Laganiere, J., Angers, D., & Pare, D. (2010). Carbon accumulation in agricultural soils after afforestation, a meta-analysis. Global Chang Biology, 16, 439-53. DOI:
  23. Laik, R., Kumar, K., Das, D. K., & Chaturvedi, O. P. (2009). Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations. Applied Soil Ecology, 42, 71-78. DOI:
  24. Lal, R. (2009) Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60(2), 158-69. DOI:
  25. Mamnabi, S., Nasrollahzadeh, S., Ghassemi-Golezani, K., & Raei, Y. (2020). Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions. Saudi Journal of Biological Sciences, 27(3), 797-804. DOI:
  26. Matos, E. S., Freese, D., Mendonca, E. S., Slazak, A., &Huttl, R. F. (2011). Carbon, nitrogen and organic C fractions in topsoil affected by conversion from silvopastoral to different land use systems. Agroforestery Systems, 81(3), 203-11. DOI:
  27. Mexia, T., Vieira, J., Príncipe, A., Anjos, A., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., Correia, O., Branquinho, C., & Pinho, P. (2018). Ecosystem services, Urban parks under a magnifying glass. Environmental Resarch, 160, 469-78. DOI:
  28. Mu, H., Fu, S., Liu, B., Yu, B., & Wang, A. (2018). Influence of soil and water conservation measures on soil fertility in the Beijing mountain area. Environmental Monitoring and Assessment, 190(9), 1-12. DOI:
  29. Naik, S. K., Maurya, S., & Bhatt, B. P. (2017). Soil organic carbon stocks and fractions in different orchards of eastern plateau and hill region of India. Agroforestery Systems, 91(3), 541-52. DOI:
  30. Nair, P. R., Nair, V., Gama-Rodrigues, E., Garcia, R., Haile, S., Howlett, D., Kumar, B. M., Mosquera-Losada, M, R., Saha, S., Takimoto, A., & Tonucci, R. (2010). Soil Carbon in Agroforestry Systems, An Unexplored Treasure? Nature Precedings pp 1-17. DOI:
  31. Narender, K., Arya, S., & Nanda, K. (2021). Potential of Melia dubia agroforestry system in soil improvement and environmental sustainability. Environment Conservation Journal, 22, 65-72. DOI:
  32. Pardon, P., Reubens, B., Reheul, D., Mertens, J., De Frenne, P., Coussement, T., Janssens, P., &Verheyen, K. (2017). Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agriculture, Ecosystems and Environment,247, 98-111. DOI:
  33. Peichl, M., Thevathasan, N. V., Gordon, A. M., Huss, J., &Abohassan, R. A. (2006). Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agroforestery Systems, 66(3), 243-57. DOI:
  34. Prakash, D., Benbi, D. K., &Saroa, G. S. (2018). Land-use effects on phosphorus fractions in Indo-Gangetic alluvial soils. Agroforestery Systems,92(2), 437-48. DOI:
  35. Ram, B., Singh, A. P., Singh, V. K., Shivran, M., &Serawat, A. (2022). Effect of different Land-uses Systems on Soil pH, Electrical Conductivity and Micronutrients in Mollisols of Uttarakhand. Biological Forum,14(1), 712-16.
  36. Reza, S. K., Ray, P., Ramachandran, S., Bandyopadhyay, S., Mukhopadhyay, S., Sah, K. D., Nayak, D. C., Singh, S. K., & Ray, S. K. (2019). Spatial distribution of soil nitrogen, phosphorus and potassium contents and stocks in humid subtropical North-eastern India. Journal of Indian Society of Soil Science, 67, 12-20. DOI:
  37. Rodriguez, L., Suárez, J. C., Pulleman, M., Guaca, L., Rico, A., Romero, M., Quintero, M. & Lavelle, P. (2021). Agroforestry systems in the Colombian Amazon improve the provision of soil ecosystem services. Applied Soil Ecology, 164, 103933. DOI:
  38. Rosenstock, T. S., Tully, K. L., Arias-Navarro, C., Neufeldt, H., Butterbach-Bahl, K., &Verchot, L. V. (2014). Agroforestry with N2-fixing trees, sustainable development’s friend or foe? Current Opinion in Environmental Sustainability, 6, 15-21. DOI:
  39. Saha, S., Saha, B., Seth, T., Ray, M., Pal, B., Pati, S., Mukhopadhyay, S. K. & Hazra, G. (2019). Micronutrients availability in soil–plant system in response to long-term integrated nutrient management under rice–wheat cropping system. Journal of Soil Science and Plant Nutrition, 19, 712-24. DOI:
  40. Sarvade, S., Mishra, H. S., Kaushal, R., Chaturvedi, S., & Tewari, S. (2014). Wheat (Triticum aestivum L.) yield and soil properties as influenced by different agri-silviculture systems of terai region, northern India. International Journal of Bio-resource and Stress Management, 5(3), 350-55. DOI:
  41. Sharma, A., Sah, V. K., Yadav, V., & Kaushik, P. (2022). Effect of poplar and eucalyptus based agroforestry system on soil biochemistry. Indian Journal of Biochemistry and Biophysics, 59(1), 26-30.
  42. Shukla, A. K., & Behera, S. K. (2014). Total and extractable manganese and iron in some cultivated acid soils of India, status, distribution and relationship with some soil properties. Pedosphere, 24, 196-208. DOI:
  43. Sileshi, G. W., Mafongoya, P. L., & Nath, A. J. (2020). Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. In, Agroforest Degraded Landscapes. Springer, Singapore, pp. 225-53. DOI:
  44. Singh, B. (2009). Return and release of nutrients from poplar litterfall in an agroforestry system under subtropical condition. Journal of Indian Society of Soil Science, 57, 214-18.
  45. Singh, G. (2010) Rainfall dependent competition affected productivity of V. radiata in Hardwickiabinata agroforestry in Indian Desert. Indian Forester, 136, 301-15.
  46. Singh, P., & Singh, B. (2016). Biomass and nitrogen dynamics of fine roots of poplar under differential N and P levels in an agroforestry system in Punjab. Tropical Ecology, 57, 143-52.
  47. Stefano, A. D., & Jacobson, M. G. (2018). Soil carbon sequestration in agroforestry systems, a meta-analysis. Agroforestry Systems,92(2), 285-99.
  48. Torralba, M., Fagerholm, N., Burgess, P. J., Moreno, G. &Plieninger, T. (2016). Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems andEnvironment, 230, 150-61. DOI:
  49. Vallejo, V. E., Arbeli, Z., Teran, W., Lorenz, N., Dick, R. P., & Roldan, F. (2012). Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agriculture, Ecosystems and Environment, 150, 139-48. DOI:
  50. Wang, H., Liu, S., Wang, J., Shi, Z., Lu, L., Zeng, J., Ming, A., Tang, J., & Yu, H. (2013). Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 300, 4-13. DOI:
  51. Wang, J., Lin, Y., Zhai, T., He, T., Qi, Y., Jin, Z., & Cai, Y. (2018). The role of human activity in decreasing ecologically sound land use in China. Land Degradation and Development, 29(3), 446-60. DOI:
  52. Wood, T. E, Lawrence, D., & Clark, D. A. (2006). Determinants of leaf litter nutrient cycling in a tropical rain forest, soil fertility versus topography. Ecosystem, 9(5), 700-10. DOI:
  53. Yadav, G. S., Kandpal, B. K., Das, A., Babu, S., Mohapatra, K. P., Devi, A. G., Devi, H. L., Chandra, P., Singh, R., & Barman, K. K. (2021). Impact of 28 year old agroforestry systems on soil carbon dynamics in Eastern Himalayas. Journal of Environmental Management, 283, 111978. DOI:
  54. Yang, N., Ji, L., Yang, Y., & Yang, L. (2018). The influence of tree species on soil properties and microbial communities following afforestation of abandoned land in northeast China. European Journal of Soil Biology, 85, 73-78. DOI: