Main Article Content


Innutrient dynamics, an extremely valuable resource is litterfall. It is crucial to the dynamics of soil nutrients, the characteristics of soil, and the transfer of energy. In an agroforestry system, decomposition and litter fall are the two key processes that contribute to soil enrichment. In addition to affecting soil characteristics and ecology, litter fall in soil has a significant impact on carbon sequestration. The type of tree, the management methods, and the quantity and quality of litter all affect how much the soil is enriched. The complicated ecophysiological process of litterfall is influenced by both internal and external variables. Other significant causes of leaf fall include variations in weather and photoperiod as well as internal plant characteristics like age of leaf or potential endogenous rhythams. Nutrients are converted as a result of decomposition of different components of litter, and their release is influenced by the content of the litter, moisture, activity of microbes, C:N, temperature, and other variables. Litterfall therefore contributes to the long-term maintenance of nutrient levels in forest ecosystems and has been a primary research focus for a better understanding of soil fertility, site productivity, and forest services.


Agroforestry Litter Decomposition Litterfall Nutrient Addition Nutrient Cycling Soil

Article Details

How to Cite
Pankaj, Bhardwaj, K. K., Yadav , R., Goyal , V., & Sharma , M. K. (2023). Pattern of litterfall production and nutrient addition in soil through litterfall by different tree species: A review. Environment Conservation Journal, 25(1), 257–266.


  1. Aravena, J. C., Carmona, M. R., Perez, C. A., & Armesto, J. J. (2002). Changes in tree species richness stand structure and soil properties in a successional chronosequence in northern Chile Island. Revista Chilena de Historia Natural, 75, 339-360. DOI:
  2. Argao, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E., Jimenez, E., Navarrete, D., & Asquez, R. (2009). Above- and below-ground net primary productivity across net primary productivity across ten Amazonian forests on contrasting soils. Biogeoscience, 6, 2759–2778. DOI:
  3. Becker, H., Pabst, J., Mnyonga, J., & Kuzyakov, Y. (2015). Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro. Biogeoscience Discussion, 2, 10031-10057. DOI:
  4. Bhardwaj, K. K., Dhillon, R. S., Godara, A. S., Bangarwa, K. S., Sushil, K., & Sheokand, R. N. (2016). Effect of different spacings of poplar based agroforestry system on soil chemical properties and nutrient status in North-West India. Indian Journal of Ecology, 43(1), 312-317.
  5. Bhatti, J. S., & Jassal, R. S. (2015). Long term aboveground litterfall production in boreal jack pine (Pinus banksiana) and black spruce (Picea mariana) stands along the Boreal Forest Transect Case Study in western central Canada. Ecoscience, 21(3–4), 301-314. DOI:
  6. Carrera, A. L., Bertiller, M. B., & Larreguy, C. (2008). Leaf litterfall, fine-root production, and decomposition in shrub lands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant Soil, 311, 39-50. DOI:
  7. Chapman, S. K., & Koch, G. W. (2007). What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil, 299, 153-162. DOI:
  8. Chaturvedi, O. P., Mishra, P. K., & Kaushal, R. (2016). Agroforestry for natural resource conservation and sustainable production. Agroforestry, pp.15.
  9. Chave, J., Navarrete, D., Almeida, S., Alvarez, E., Aragao, L. E. O. C., Bonal, D., Chatelet, P., Silva Espejo, J., Goret, J. Y., Hildebrand, P. V., Jimenez, E., Patino, S., Penuela, M. C., Phillips, O. L., Stevenson, P., & Malhi, Y. (2010). Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 7, 43-55. DOI:
  10. Chen, C., Liu, W., Wu, J., Jiang, X., & Zhu, X. (2019). Can intercropping with the cash crop help improve the soil physico-chemical properties of rubber plantations? Geoderma, 335, 149-160. DOI:
  11. Cornwell, W. K., Cornlissen, J. H. C., Amatangelo, K., Dorrrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Bodegom, P.V., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V.,& Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecological Letter, 11,1065-1071. DOI:
  12. Dawoe, E. K., Isaac, M. E., & Quashie-Sam, J. (2010). Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant and Soil, 330(1), 55-64. DOI:
  13. Devi, S., Bhardwaj, K. K., Dhillon, R. S., Sharma, M. K., & Dahiya, G. (2021). Nutrient dynamics associated with leaf litter fall under agroforestry systems in semi-arid region of Haryana. Indian Journal of Agroforestry, 23(1), 13-17.
  14. Devis, A. S., & Yadav, P. S. (2007). Wood and leaf litter decomposition of Dipterocarpus tuberculatus Roxb. in a tropical deciduous forest of Manipur, North East India. Current Science, 93, 243-246.
  15. Dhyani, S. K., Handa, A. K., & Uma. (2013). Area under agroforestry in India, an assessment for present status and future perspective. Indian Journal of Agroforestry, 15(1), 1-11.
  16. Dominguez, A., Bedano, C. J., Becker, A. R., & Arolfo, R. V. (2014). Organic farming fosters agroecosystem functioning in Argentinian temperate soils, evidence from litter decomposition and soil fauna. Applied Soil Ecology, 83, 170-176. DOI:
  17. Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). IPCC Guidelines for National Greenhouse Gas Inventories, vol. 5. Institute for Global Environmental Strategies (Eds), Hayama, Japan.
  18. Fontes, A. G., Gama-Rodrigues, A. C., Gama-Rodrigues, E. F., Sales, M. V. S., Costa, M. G., & Machado, R. C. R. (2014). Nutrient stocks in litterfall and litter in cocoa agroforests in Brazil. Plant Soil, 383, 313-335. DOI:
  19. Gartner, T. B., & Cardon, Z. G. (2006). Site of leaf origin affects how mixed litter decomposes. Soil Biology and Biochemistry, 38(8), 2307-2317. DOI:
  20. Giebelmann, U. C., Martins, K. G., Brandle, M., Schadler, M., Marques, R., & Brandl, R. (2013). Lack of home-field advantage in the decomposition of leaf litter in the Atlantic rainforest of Brazil. Applied Soil Ecology, 49, 5-10. DOI:
  21. Giri, A., Kumar, G., Arya, R., Mishra, S., & Mishra, A. K. (2019). Carbon sequestration in Populus deltoides based agroforestry system in northern India. International Journal of Chemical Studies, 7(1), 2184-2188.
  22. Guo, Y., Chen, H., Mallik, A., Wang, B., Li, D., Xiang, W., & Li, X. (2019). Predominance of abiotic drivers in the relationship between species diversity and litterfall production in a tropical karst seasonal rainforest. Forest Ecology and Management, 449, 1-9. DOI:
  23. Hattenschwiler, S., & Jorgensen, H. B. (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 98, 754-763. DOI:
  24. Hayes, G. F., & Holl, K. D. (2003). Cattle grazing impacts on annual forbs and vegetation composition of mesic grasslands in California. Conservation Biology, 17(6), 1694-1702. DOI:
  25. Jha, P., & Mohapatra, P. K. (2010). Leaf litterfall, fine root production and turnover in four major tree species of the semi-arid region of India. Plant and Soil, 326(1), 481-491. DOI:
  26. Joffre, R., Agren, G. J., Gillon, D., & Bosatta, E. (2001). Organic matter quality in ecological studies, Theory meets experiment. Oikos, 93, 451–458. DOI:
  27. Kirman, S., Strasberg, D., Grondin, V., Colin, F., Gilles, J., & Meunier, J.D. (2007). Biomass and litterfall in a native lowland rainforest, Marelongue reserve, La r´eunion island, Indian ocean. Forest Ecology and Management, 252(1-3), 257-266. DOI:
  28. Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems, a review. Energy, Ecology and Environment, 2(4), 236-249. DOI:
  29. Kumar, B. M. (2008). Litter dynamics in plantation and agroforestry systems of the tropics - A review of observations and methods. In, Batish DR, Kohli RK, Jose S, Singh HP, editors. Ecological Basis of Agroforestry. Boca Raton (USA), CRC Press; pp 181–216. DOI:
  30. Kumar, M., Joshi, M., & Todaria, N. P. (2010). Regeneration status of a sub-tropical Anogeissus latifolia forest in Garhwal Himalaya, India. Journal of Forestry Research, 21(4), 439-444. DOI:
  31. Kumar, M., Kumar, P., Tewari, J. C., & Pandey, C. B. (2017). Changes in soil fertility under multipurpose tree species in Thar Desert of Rajasthan. Range Management and Agroforestry, 38(2), 274-279.
  32. Kumar, T., Kumari, B., Arya, S., Yadav, V.K., & Kaushik, P. (2021). Estimation of the soil and plant nutrient budget of the traditional Eucalyptus based agroforestry system in different spacing. Indian Journal of Traditional Knowledge, 20(1), 253-261. DOI:
  33. Leitner, S., Sae-Tun, O., Kranzinger, L., Zechmeister-Boltenstern, S., & Zimmermann, M. (2016). Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest. Plant Soil, 403(1-2), 455-469. DOI:
  34. Ludvichak, A. A., Schumacher, M. V., Dick, G., Momolli, D. R., Souza, H. P. D., & Guimarães, C. D. C. (2016). Nutrient return through litterfall in a Eucalyptus dunnii Maiden stand in sandy soil. Revista Árvore, 40, 1041-1048. DOI:
  35. Magid, J., Cadisc, G., & Giller, K. E. (2002). Short and medium term plant litter decomposition in a tropical Ultisol elucidated by physical fraction in a dual 13C and 14C isotope study. Soil Biology and Biochemistry, 34, 1273-1281. DOI:
  36. Mamani-Pati, F., Clay, D. E., Clay, S. A., Smeltekop, H., & Yujra-Callata, M. A. (2012). The influence of strata on the nutrient recycling within a tropical certified organic coffee production system. International Scholarly Research Notices, Agronomy. DOI:
  37. Martinez-Alonso, C., Valladares, F., Camarero, J., Arias, M. L., Serrano, M., & Rodríguez, Y. A. (2007). The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a mediterranean Scots pine forest. Forest Ecology and Management, 253(1-3), 19-29. DOI:
  38. Mukhopadhyay, S., Masto, R. E., Yadav, A., George, J., Ram, L. C., & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment, 542, 540-550. DOI:
  39. Muoghalu, J. I., & Odiwe, A. I. (2011). Litter production and decomposition in cacao (Theobroma cacao) and kolanut (Cola nitida) plantations. Ecotropica, 17(1), 79-90.
  40. Nair, P. K. (2011). Agroforestry systems and environmental quality, Introduction. Journal of Enviromental Quality, 40(3), 784-790. DOI:
  41. Negash, M., & Starr, M. (2021). Litter decomposition of six tree species on indigenous agroforestry farms in south-eastern Ethiopia in relation to litterfall carbon inputs and modelled soil respiration. Agroforestry Systems, 95(4), 755-766. DOI:
  42. Neumann, M., Ukonmaanaho, L., Johnson, J., Benham, S., Vesterdal, L., Novotny, R., Verstraeten, A., Lundin, L., Thimonier, A., Michopoulos, P., & Hasenauer, H. (2018). Quantifying carbon and nutrient input from litterfall in european forests using field observations and modelling. Global Biogeochemical Cycles, 32(5), 784-798. DOI:
  43. Notaro, K. A., Erika, V. M., Gustavo, P. D., Aline, O. S., & Patrícia, M. M. (2014). Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude. Scientia Agricola, 71(2), 87-95. DOI:
  44. Owusu-Sekyere, E., Cobbina, J., & Wakatsuki, T. (2006). Nutrient cycling in primary, secondary forests and cocoa plantation in the Ashanti Region, Ghana. West African Journal of Applied Ecology, 9(1), 1-9. DOI:
  45. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S.L., Canadell, J. G., Ciais, P., Jackson, R.B., Pacala, S.W., David McGuire, A., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993. DOI:
  46. Parsons, S. A., Valdez-Ramirez, V., Congdon, R. A., & Williams, S. E. (2014). Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosciences, 11, 5047-5056. DOI:
  47. Quadros, A. F., Nordhaus, I., Reuter, H., & Zimmer, M. (2019). Modelling of mangrove annual leaf litterfall with emphasis on the role of vegetation structure. Estuarine. Coastal and Shelf Science, 218, 292–299. DOI:
  48. Rani, S., Benbi, D. K., Rajasekaran, A., & Chauhan, S. K. (2016). Litterfall, decomposition and nutrient release patterns of different tree species in Taran Taran district of Punjab, India. Journal of Applied and Natural Science, 8(3), 1260-1266. DOI:
  49. Rawat, N., & Nautiyal, M. C. (2009). Litter production pattern and nutrients discharge from decomposing litter in Himalayan alpine ecosystem. New York Science Journal, 2(6), 1554-0200.
  50. Satyawali, K., Chaturvedi, S., & Bisht, N. (2017). Effect of high density Eucalyptus camaldulensis and Melia azedarach plantation on soil nutrients at different planting density. International Journal of Communication Science, 5(4), 827-831.
  51. Singh, B. (2009). Return and release of nutrients from poplar litterfall in an agroforestry system under subtropical condition. Journal of the Indian Society of Soil Science, 57(2), 214.
  52. Singh, B., Gill, R.I.S., & Kaur, N. (2007). Litterfall and nutrient return in poplar plantation varying in row directions and spacings. Indian Journal of Agroforestry. 9, 33-37.
  53. Starr, M., Saarsalmi, A., Hokkanen, T., Merilac, P., & Helmisaari, H. S. (2005). Models of litterfall production for Scots pine (Pinus sylvestris l.) in Finland using stand, site and climate factors. Forest Ecology and Management, 205 (1–3), 215–225. DOI:
  54. Triadiati, S., Tjitrosemito, E., Sundarsono, G., Qayim, I., & Leuschner, C. (2011). Litterfall production and leaf-litter decomposition at natural forest and cacao agroforestry in Central Sulawesi, Indonesia. Asian Journal of Biological Science, 4, 221-234. DOI:
  55. Tripathi, O. P., Pandey, H. N., & Tripathi, R. S. (2009). Litter production, decomposition and physicchemical properties of soil in 3 developed agroforestry systems of Meghalaya, Northeast India. African Journal of Plant Science, 3(8), 160-167.
  56. Veen, G. F., Sundqvist, M. A., & Wardle, D. A. (2015). Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology, 29, 981-991. DOI:
  57. Verma, A., Kumar, P., Soni, M. L., Pawar, N., Pradhan, U., Tanwar, S. P. S., & Kumar, S. (2022). Litter production and litter dynamics in different agroforestry systems in the arid western region of India. Biological Agriculture & Horticulture, 38(1), 40-60. DOI:
  58. Wood, T. E., Lawrence, D., Clark, A. D. (2007). Determinants of leaf litter nutrient cycling in a tropical rain forest, soil fertility versus topography. Ecosystems, 9,700-710. DOI:
  59. Yadav, R. P., & Bisht, J. K. (2014). Litter fall and potential nutrient returns from pecan nut (Carya illinoinensis) in agroforestry system in Indian Himalaya. International Journal of Herbal Medicine, 2(1), 51-52.
  60. Yadav, R. S., Yadav, L., & Chhipa, B. R. (2008). Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan, India. Agroforestry Systems, 73(1), 1-12. DOI:
  61. Yan, T., Lü, X., Yang, K., & Zhu, J. (2016). Leaf nutrient dynamics and nutrient resorption, a comparison between larch plantations and adjacent secondary forests in Northeast China. Journal of Plant Ecology, 9(2), 165-173. DOI:
  62. Yang, Y. S., Guo, J. S., Chen, G. S., He, Z. W., & Xie, J. S. (2003). Effect of slash and burning on nutrient removal and soil fertility in Chinese fir and evergreen broadleaved forests of midsubtropical China. Pedosphere, 13, 87-96.
  63. Yengwe, J., Amalia, O., Lungu, O. I., & De Neve, S. (2018). Quantifying nutrient deposition and yield levels of maize (Zea mays) under Faidherbia albida agroforestry system in Zambia. European Journal of Agronomy, 99, 148-155. DOI:
  64. Zhang, H., Yuan, W., Dong, W., & Liu, S. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complex, 20, 240-247. DOI: