Main Article Content


The genus of Clematis is a buttercup family (Ranunculaceae), recognized for its flowers and adaptable as an ornamental plant in colder climates. It contains around 300 species. Clematis has a variety of active phytoconstituents or secondary metabolites which are responsible for health benefits in human beings. Traditionally various species of the clematis genus used for centuries to treat various ailments including syphilis, bone disorders, gout, rheumatism, diuretics, wound healing, blood sugar control, blood diseases, spleen difficulties, leprosy, fevers, skin diseases. A systematic review of scientific electronic database and reference books were consulted to find all relevant literature for this work. This review discusses the ethno-medicinal usage, health advantages, phytoconstituents and bioactivities of clematis species.


Secondary metabolites Clematis Ranunculaceae Phytopharmaceuticals Biological activities

Article Details

How to Cite
Thapliyal, S., Sati, H., & Sati, B. (2024). A Comprehensive insight into the phytoconstituents and health benefits of Clematis species. Environment Conservation Journal, 25(1), 297–302.


  1. Abdelkader, M.S., Altaweel, A.M., & Eldeeb, K.S.(2008). Bioactivity guided phytochemical study of Clematis hirsuta growing in Saudi Arabia. Natural Product Sciences, 14(1), 56.
  2. Alvarez, M.E., Maria, A.O.M., Villegas, O., & Saad, J.R.(2003). Evaluation of diuretic activity of the constituents of Clematis montevidensis Spreng.(Ranunculaceae) in rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(8), 958-960. DOI:
  3. Ameya, G., Manilal, A., Sabu, K.R., & Aragie, S.(2022). Bioassay-Guided Phytochemical Analyses and Antimicrobial Potentials of the Leaf Extract of Clematis hirsuta Perr. and Guill. Against Some Pathogenic Bacteria and Fungi. Infection and Drug Resistance, 6577-6588. DOI:
  4. Buzzini, P., & Pieroni, A.(2003). Antimicrobial activity of extracts of Clematis vitalba towards pathogenic yeast and yeast-like microorganisms. Fitoterapia, 74(4), 397-400. DOI:
  5. Caceres, A., Menendez, H., Mendez, E., Cohobón, E., Samayoa, B. E., Jauregui, E.,Carrillo, G. (1995). Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases. Journal of ethnopharmacology, 48(2), 85-88. DOI:
  6. Chen, J.H., Du, Z.Z., Shen, Y.M., & Yang, Y.P.(2009). Aporphine alkaloids from Clematis parviloba and their antifungal activity. Archives of pharmacal research, 32, 3-5. DOI:
  7. Ding, Q., Yang, L.X., Yang,H.W., Jiang, C., Wang, Y.F., & Wang, S.(2009). Cytotoxic and antibacterial triterpenoids derivatives from Clematis ganpiniana. Journal of ethnopharmacology, 126(3), 382-385. DOI:
  8. Du, Z., Zhu, N., Ze-Ren-Wang-Mu, N., & Shen, Y. (2003). Two new antifungal saponins from the Tibetan herbal medicine Clematis tangutica. Planta Medica, 69(06), 547-551. DOI:
  9. Duke, J.A.(1985). CRC handbook of medicinal herbs. Boca Raton: Florida: CRC Press.
  10. Ekpo, B.A., Bala, D.N., Essien, E.E., & Adesanya, S.A. (2008). Ethnobotanical survey of Akwa Ibom state of Nigeria. Journal of ethnopharmacology, 115(3), 387-408. DOI:
  11. Feng, T.H.Z., & Zhang, Y.H. A new cyclopeptide alkaloid from Clematis Florida.
  12. Fu, Q., Qiu, L., Yuan, H.M., Du, Y.F., Cheng, X.L., Tang, T.T., Xu, S.Y. (2017). Triterpenoid saponins from Clematis chinensis and their inhibitory activities on NO production. Phytochemistry Letters, 21, 206-210. DOI:
  13. Gakuya, D.W., Okumu, M.O., Kiama, S.G., Mbaria, J.M., Gathumbi, P.K., Mathiu, P.M., & Nguta, J.M. (2020). Traditional medicine in Kenya: past and current status, challenges, and the way forward. Scientific African, 8, e00360. DOI:
  14. Karimi, E., Ghorbani Nohooji, M., Habibi, M., Ebrahimi, M., Mehrafarin, A., & Khalighi-Sigaroodi, F. (2018). Antioxidant potential assessment of phenolic and flavonoid rich fractions of Clematis orientalis and Clematis ispahanica (Ranunculaceae). Natural product research, 32(16), 1991-1995. DOI:
  15. Kaur, K., Kaur, A., & Thakur, S. (2020). Use of medicinal plants in traditional health care practices: A case study in Talwandi Sabo, Bathinda District, Punjab (India). Curr Botany, 11, 75-86. DOI:
  16. Kingsbury, J. M. (1964). Poisonous plants of the United States and Canada. Soil Science, 98(5), 349. DOI:
  17. Kırmızıbekmez, H., İnan, Y., Reis, R., Sipahi, H., Gören, A.C., & Yeşilada, E. (2019). Phenolic compounds from the aerial parts of Clematis viticella L. and their in vitro anti-inflammatory activities. Natural product research, 33(17), 2541-2544. DOI:
  18. Lee, S.E., Park, S.H., Yoo, J.A., Kwon, K., Kim, J.W., Oh, S.W., Han, B.S.(2019). Antagonizing effects of Clematis apiifolia DC. extract against Benzo [a] pyrene-induced damage to human keratinocytes. Oxidative medicine and cellular longevity, 2019. DOI:
  19. Li, L., Gou, M.L., & He, Y.X. (2013). Mandshunosides C–E from the roots and rhizomes of Clematis mandshurica. Phytochemistry Letters, 6(4), 570-574. DOI:
  20. Li, R.W., Myers, S.P., Leach, D.N., Lin, G.D., & Leach, G. (2003). A cross-cultural study: anti-inflammatory activity of Australian and Chinese plants. Journal of ethnopharmacology, 85(1), 25-32. DOI:
  21. Li, Y., Wang, S.F., Zhao, Y.L., Liu, K.C., Wang, X.M., Yang, Y.P., & Li, X.L. (2009). Chemical constituents from Clematis delavayi var. spinescens. Molecules, 14(11), 4433-4439. DOI:
  22. Lu, B., Zhang, B., Qi, W., Zhu, Y., Zhao, Y., Zhou, N., Wu, C.(2014). Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin. Acta Biochim Biophys Sin, 46(11), 923-934. DOI:
  23. Muthaura, C.N., Rukunga, G.M., Chhabra, S.C., Mungai, G.M., & Njagi, E.N.M.(2007). Traditional phytotherapy of some remedies used in treatment of malaria in Meru district of Kenya. South African Journal of Botany, 73(3), 402-411. DOI:
  24. Naika, H.R., & Krishna, V.(2007). Antimicrobial Activity of Extracts from the Leaves of Clematis gouriana R ox b. Int J Biomed and Pharm Sci, 1, 69.
  25. Ody, P.(1993). Complete medicinal herbal: Dorling Kindersley.
  26. Park, E.K., Ryu, M.H., Kim, Y.H., Lee, Y.A., Lee, S.H., Woo, D.H., Yang, H.I. (2006). Anti-inflammatory effects of an ethanolic extract from Clematis mandshurica Rupr. Journal of ethnopharmacology, 108(1), 142-147. DOI:
  27. Peng, C., Perera, P.K., Li, Y.m., Fang, W.R., Liu, L.F., & Li, F.W. (2012). Anti-inflammatory effects of Clematis chinensis Osbeck extract (AR-6) may be associated with NF-κB, TNF-α, and COX-2 in collagen-induced arthritis in rat. Rheumatology international, 32, 3119-3125. DOI:
  28. Peng, H., Lv, H., Wang, Y., Liu, Y.H., Li, C.Y., Meng, L., Bao, J.K. (2009). Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides, 30(10), 1805-1815. DOI:
  29. Rana, S., Rawat, K., Mahendru, M., Padwad, Y., Pakade, Y.B., Lal, B., & Bhushan, S. (2015). Screening of bioconstituents and in vitro cytotoxicity of Clematis gouriana leaves. Natural product research, 29(23), 2242-2246. DOI:
  30. Rasool Hassan, B.A. (2012). Medicinal plants (importance and uses). Pharmaceut Anal Acta, 3(10), 2153-2435. DOI:
  31. Salmerón-Manzano, E., Garrido-Cardenas, J.A., & Manzano-Agugliaro, F. (2020). Worldwide research trends on medicinal plants. International journal of environmental research and public health, 17(10), 3376. DOI:
  32. Sati, O.P., Uniyal, S.K., Bahuguna, S., & Kikuchi, T.(1990). Clematoside-S, a triterpenoid saponin from the roots of Clematis grata. Phytochemistry, 29(11), 3676-3678. DOI:
  33. Sheela, J.A.H.(2014). Phytochemical Constituents of the Plant Clematis Gouriana. International Journal of Innovative Research in Science, Engineering and Technology, ISSN, 2319-8753.
  34. Shi, Y., Van Albada, G.D., Dongarra, J., & Sloot, P. M.A. (2007). Computational Science-ICCS 2007: 7th International Conference, Beijing China, May 27-30, 2007, Proceedings, Part III (Vol. 4489): Springer. DOI:
  35. Sun, F., He, Q., Xiao, P.G., & Cheng, Y.Y.(2007). A new triterpenoid saponin from Clematis ganpiniana. Chinese Chemical Letters, 18(9), 1078-1080. DOI:
  36. Sun, F., & Yang, D.(2009). Advance in chemical constituents of genus Clematis. Zhongguo Zhong yao za zhi Zhongguo zhongyao zazhi China Journal of Chinese Materia Medica, 34(20), 2660-2668.
  37. Sun, X.B., Liu, Y.P., Yang, Y.Y., Liu, X.Y., & Xiang, D.X. (2016). Anti-arthritic effect of total saponins from Clematis henryi Oliv. on collagen-induced arthritis rats. European Journal of Inflammation, 14(2), 71-77. DOI:
  38. Thapliyal, R.P., & Bahuguna, R.P. (1993a). Clemontanoside-C, a saponin from Clematis montana. Phytochemistry, 33(3), 671-673. DOI:
  39. Thapliyal, R.P., & Bahuguna, R.P. (1993b). An oleanolic acid based bisglycoside from Clematis montana roots. Phytochemistry, 34(3), 861-862. DOI:
  40. Thapliyal, R.P., & Bahuguna, R.P. (1994). Clemontanoside-E, a new saponin from Clematis montana. International journal of pharmacognosy, 32(4), 373-377. DOI:
  41. Tian, X., Feng, J., Tang, H., Zhao, M., Li, Y., Hai, W., & Zhang, X. (2013). New cytotoxic triterpenoid saponins from the whole plant of Clematis lasiandra Maxim. Fitoterapia, 90, 233-239. DOI:
  42. Turner, N.J., & Szczawinski, A.F.(1991). Common poisonous plants and mushrooms of North America: Timber Press Inc.
  43. Ulubelen, A.(1970).Constituents of the leaves and the stems of Clematis vitalba. Phytochemistry, 9, 233-234. DOI:
  44. Wei, Y., Chen, T., Wang, S., Shen, C., Yan, S., Song, Z., Li, Y.(2022). Separation of a new triterpenoid saponin together with six known ones from Clematis tangutica (Maxim.) Korsh and evaluation of their cytotoxic activities. Natural product research. doi: DOI:
  45. Xu, R., Zhao, W., Xu, J., Shao, B., & Qin, G.(1996). Studies on bioactive saponins from Chinese medicinal plants. Saponins Used in Traditional and Modern Medicine, 371-382. DOI:
  46. Yan, L.H., Xu, L.Z., Lin, J., Yang, S.L., & Feng, Y.L.(2009). Triterpenoid saponins from the stems of Clematis parviloba. Journal of Asian natural products research, 11(4), 332-338. DOI:
  47. Yan, L.H., Brantner, A.H., Wang, Z.M., Zhang, Q.W., Xu, L.Z., & Yang, S.L. (2009). A new phenolic glycoside from the stems of Clematis parviloba. Planta Medica, 75(09), PE56. DOI:
  48. Yan, L.H., Xu, L.Z., Lin, J., Zou, Z.M., Zhao, B.H., & Yang, S.L. (2008). Studies on lignan constituents of Clematis parviloba. Zhongguo Zhong yao za zhi Zhongguo zhongyao zazhi China Journal of Chinese Materia Medica, 33(15), 1839-1843.
  49. Yan, L.H., Xu, L.Z., Wang, Z.M., Zhang, Q.W., & Yang, S.L.(2010). Two new phenolic glycosides from the stems of Clematis parviloba. Yao xue xue bao Acta pharmaceutica Sinica, 45(12), 1527-1532.
  50. Yan, L.H., Xu, L.Z., Zou, Z.M., & Yang, S.L. (2007). Chemical constituents from stems of Clematis armandii (I). Zhong cao yao, 38, 340-342.
  51. Yanqun, Z.U., Li, Q.I.N., Fangdong, Z., Jiong, W.U., Yuan, L.I., Jianjun, C., Wenyou, H.U. (2020). Intercropping of Sonchus asper and Vicia faba affects plant cadmium accumulation and root responses. Pedosphere, 30(4), 457-465. DOI:
  52. Yeșilada, E.,Ustun, O., Sezik, E., Takaishi, Y., Ono, Y., & Honda, G.(1997). Inhibitory effects of Turkish folk remedies on inflammatory cytokines: interleukin-1α, interleukin-1β and tumor necrosis factor α. Journal of ethnopharmacology, 58(1), 59-73. DOI:
  53. Zhang, Q., Lu, Y.Y., Yang, L., & Tang, H.F. (2022). New triterpenoid saponins from the whole plants of Clematis heracleifolia. Fitoterapia, 159, 105179. DOI:
  54. Zhang, Y.M., Zhong, G.Y., & Zhang, P.Z. (2019). Chemical constituents isolated from Clematis akebioides (Maximowicz) Veitch. Biochemical Systematics and Ecology, 83, 13-16. DOI:
  55. Zhao, M., Da Wa, Z.M., Guo, D.L., Fang, D.M., Chen, X.Z., Xu, H.X., Zhou, Y.(2016). Cytotoxic triterpenoid saponins from Clematis tangutica. Phytochemistry, 130, 228-237. DOI:
  56. Zhao, M., Ma, N., Qiu, F., Tian, X., Zhang, Y., Tang, H., & Liu, X.(2014). Triterpenoid saponins from the roots of Clematis argentilucida. Fitoterapia, 97, 234-240. DOI: