Main Article Content

Abstract

The purpose of the investigation is to calculate soil infiltration rates with the help of infiltration models. The infiltration model helps to design and evaluate surface irrigation systems. The study calculated constant infiltration for two types of soils (clay loam soil and laterite soil) under field conditions (Unploughed and Ploughed). The double-ring infiltrometer has been implemented to experiment. The value of various constants of the models was calculated using the approach of averages counselled through a graphical technique. Fitting infiltration test data to prominent infiltration models such as Philip’s, Horton's and Kostiakov’s and The Nash- Sutcliffe efficiency (NSE), coefficient of determination (R2) and root mean square error (RMSE) statistics are used to evaluate the effectiveness of the model.  The results indicate that Philip's model is the most reliable, with R2, NSE, and RMSE values ranging from 0.9044-0.9677, 0.294-0.957 and 1.2647-5.7129, respectively. Therefore, under identical circumstances and without any kind of infiltration information, the above model can be employed to artificially produce infiltration information.


 

Keywords

Double ring infiltrometer Infiltration models Nash–Sutcliffe efficiency Philip’s Model Root mean square error

Article Details

How to Cite
Kindo, S., Agrawal, N., & Shori, A. (2024). Evaluation of infiltration models in clay loam and laterite soils under field conditions. Environment Conservation Journal, 25(1), 22–32. https://doi.org/10.36953/ECJ.24242644

References

  1. Angulo-Jaramillo, R., Bagarello, V., Iovino, M., & Lassabatere, L. (2016). Infiltration measurements for soil hydraulic characterization Berlin. Springer, 43-180. DOI: https://doi.org/10.1007/978-3-319-31788-5_2
  2. Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., & Piccinni, A.F. (2016). Land Use Change Impact on Flooding Areas: The Case Study of Cervaro Basin (Italy). Sustainability, 8(996), 1-18. DOI: https://doi.org/10.3390/su8100996
  3. ASTM Standards 2003. Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer. D: 3385 – 9403
  4. Dagadu, J. S., & Nimbalkar, P. T. (2012). Infiltration studies of different soils under different soil conditions and comparison of infiltration models with field data. International Journal of Advanced Engineering Technology. 3(2), 154-157.
  5. Dhalhar, M.A. 1972. Process and Field Evaluation of Infiltration Rate. A “PlanB” Paper for the M.Sc. Degree. The University of Minnesota.
  6. Garg, K. K., Jha, M. K., & Kar, S. (2005). Field investigation of water movement and nitrate transport under perched water table conditions. Biosystems Engineering, 92(1), 69-84. DOI: https://doi.org/10.1016/j.biosystemseng.2005.05.016
  7. Igbadun, H., Othman, M., & Ajayi, A. (2016). Performance of selected water infiltration models in sandy clay loam soil in Samaru Zaria. Global Journal of Researches in Engineering: J General Engineering, 16(4).
  8. Machiwal, D., Jha, M. K., & Mal, B. C. (2006). Modelling infiltration and quantifying spatial soil variability in a watershed of Kharagpur, India. Biosystems Engineering, 95(4), 569-582. DOI: https://doi.org/10.1016/j.biosystemseng.2006.08.007
  9. Mahapatra, S., Jha, M. K., Biswal, S., & Senapati, D. (2020). Assessing variability of infiltration characteristics and reliability of infiltration models in a tropical sub-humid region of India. Scientific Reports, 10(1), 1515. DOI: https://doi.org/10.1038/s41598-020-58333-8
  10. Mirzaee, S., Zolfaghari, A. A., Gorji, M., Dyck, M., & Ghorbani Dashtaki, S. (2014). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes. Archives of Agronomy and Soil Science, 60(5), 681-693. DOI: https://doi.org/10.1080/03650340.2013.823477
  11. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3), 282-290. DOI: https://doi.org/10.1016/0022-1694(70)90255-6
  12. Oku, E., & Aiyelari, A. (2011). Predictability of Philip and Kostiakov infiltration models under inceptisols in the humid forest zone, Nigeria. Agriculture and Natural Resources, 45(4), 594-602.
  13. Philip, J. R. (1957). The theory of infiltration. Soil Science,83(5), 345-358. DOI: https://doi.org/10.1097/00010694-195705000-00002
  14. Saadi, A., and Al-Azawi, S.A. (1985). Experimental Evaluation of Infiltration Models. Journal of Hydrology, 24, 77-88.
  15. Shukla, M. K., Lal, R., & Unkefer, P. (2003). Experimental evaluation of infiltration models for different land use and soil management systems. Soil Science, 168(3), 178-191. DOI: https://doi.org/10.1097/01.ss.0000058890.60072.7c
  16. Sihag, P., Tiwari, N. K., & Ranjan, S. (2017a). Estimation and inter-comparison of infiltration models. Water Science, 31(1), 34-43. DOI: https://doi.org/10.1016/j.wsj.2017.03.001
  17. Sihag P, Tiwari NK., & Ranjan S. (2017b) Modelling of infiltration of sandy soil using gaussian process regression. Model Earth Syst Environ, 3(3), 1091–1100. DOI: https://doi.org/10.1007/s40808-017-0357-1
  18. Sihag, P., Tiwari, N. K., & Ranjan, S. (2019). Prediction of unsaturated hydraulic conductivity using adaptive neuro-fuzzy inference system (ANFIS). ISH Journal of Hydraulic Engineering, 25(2), 132-142. DOI: https://doi.org/10.1080/09715010.2017.1381861
  19. Singh, B., Sihag, P., & Singh, K. (2017). Modelling of impact of water quality on infiltration rate of soil by random forest regression. Modeling Earth Systems and Environment, 3, 999-1004. DOI: https://doi.org/10.1007/s40808-017-0347-3
  20. Shakesby, R. A., Doerr, S. H., & Walsh, R. P. D. (2000). The erosional impact of soil hydrophobicity: Current problems and future research directions. Journal of Hydrology, 231–232, 178–191. DOI: https://doi.org/10.1016/S0022-1694(00)00193-1
  21. Thomas, A. D., Of osu, A. E., Emmanuel, A., De-Graft, A. J., Ayine, A. G., Asare, A., & Alexander, A. (2020). Comparison and estimation of four infiltration models. Open Journal of Soil Science, 10(2), 45-57. DOI: https://doi.org/10.4236/ojss.2020.102003
  22. Walker, J. D., Walter, M. D., & Parlange, J. Y. (2007). Reduced raindrop-impact driven soil erosion by infiltration. Journal of Hydrology, 342, 331–335. DOI: https://doi.org/10.1016/j.jhydrol.2007.06.003