Main Article Content


Five bacterial strains for biodegradation study were initially isolated from quinalphos exposed soil from cotton field of Indian Agricultural Research Institute, India by Serial dilution and enrichment technique. Amongst them, two strains Pantoea agglomerans and Acinetobacter sp. dcm5A were exposed to different concentrations (50-250 ppm, parts per million) of quinalphos to evaluate their tolerance and the optimum concentration of quinalphos supported growth. Growth kinetics of the isolates was studied by means of optical density of the culture media (150 rpm, rotation per minute) at 30oC for 15 days. The optimal concentration of quinalphos for the growth of Pantoea agglomerans was 100 ppm, while for Acinetobacter sp. dcm5A was 200 ppm. Bacterial strains Pantoea agglomerans and Acinetobacter sp. dcm5A degraded quinalphos 60% and 79.7% respectively in 7 days incubation and 100% degradation by both strains was observed after 13 days of incubation.


Biodegradation Quinalphos Pantoea agglomerans Acinetobacter sp. dcm 5A

Article Details

How to Cite
Mayanglambam, T., Sharma, P. K., Singh, D. K., L, A., M., J., Mishra, A. K., & Rawat, R. T. (2023). Biodegradation of quinalphos by gram negative bacteria Pantoea agglomerans and Acinetobacter sp. dcm5A. Environment Conservation Journal, 24(2), 373–379.


  1. Armes, N. J., Jadhav, D. R., Bond, G. S., King, A. B. S., (1992). Insecticide resistance in Helicoverpa armigera in south India. Pestic. Sci.,34, 355-364. DOI:
  2. Awasthi, M. D., Anand, L., Krishna Moorthy, P. N. and Sarode, S. V., (1984).Vertical movement and persistence of granular insecticides in soil. In: Pestic. and Environ., Pp. 128-133.
  3. Babu, G. V., Reddy A. K., Narasimha, M. D., Sethunathan, N.,(1998). Persistence of quinalphos and occurrence of its primary metabolites in soil.Bull. Environ. Contam. Toxicol.,60(5), 724-731. DOI:
  4. Bhadbhade, B. J., Samaik, S. S. and Kanekar, P. P., (2002). Biomineralization of an organophosphorus pesticide, monocrotophos, by soil bacteria. J. of Appl. Microbiol., 93(2), 224-231. DOI:
  5. Bhavani, T. (2020). Biodegradation of Organophosphorus pesticides: Emerging Trends. International Journal of Recent Scientific Research, 11 (07), 39242-39250.
  6. Bokonjie, D., Jovanovic, D., Jovanovic, M. and Maksimovic, M., (1987). Protective effects of oximes HI-6 and PAM-2 applied by osmotic minipumps in quinalphos poisoned rats. Archint Pharmacodyt Ther.288 (2), 09-318.
  7. Brown, K. A. (1980). Phosphotriesterases of flavor-bacterium sp. Soil Biol. Biochem., 12, 105-112. DOI:
  8. Comeau, Y., Greer C. W. and Samson, R., (1993). Role of inoculum preparation and density on the bioremediation of 2,4-D. Appl. Microbiol. Biotechnol.,38,681-687. DOI:
  9. Garg, Renuka, Gupta, Renu, Singh, Nirmal and Bansal, Ajay (2022). Eliminating pesticide quinalphos from surface waters using synthesized GO-ZnO nanoflowers: Characterization, degradation pathways and kinetic study. Chemosphere, 286(3), 21-32. DOI:
  10. Karoly, G. H., Gyorfi and Schremm, A., (1988). Translocation of quinalphos, the active material of Ekalux 25EC in soil. Novenyvedelem (Budapest). 24(10),436-440 DOI:
  11. Karpouzas, D. G. and Walker, A., (2000). Factors influencing the ability of Pseudomononas putida strains ep l and ll, to degrade the organophosphorus Ethoprophos. J. of Appl. Microbiol., 89, 40-48. DOI:
  12. Kaur, Paramjeet, Bansal, Priti and Sud, Dhiraj (2021). Adsorption Behaviour of quinalphos and its leaching potential in different agricultural soils. Soil and Sediment Contamination : An International Journal. 30 (6), 730-742. DOI:
  13. Kumar, S., Mukerji, K. G. and Lal, R. (1996). Molecular aspects of pesticide degradation by microorganisms. Crit. Reviews in Microbiol., 22 (1), 1-26. DOI:
  14. Mallick, K. B., Banerji, A., Shaki, N. A. and Sathunathan, N., (1999). Bacterial degradation of chlorpyrifos in pure cultures and in soil.Bull. Environ. Contam. Toxicol., 62,48-54. DOI:
  15. Mayanglambam, T., K. Vig & Singh, D. K., (2005). Quinalphos Persistence and Leaching Under Field Conditions and Effects of Residues on Dehydrogenase and Alkaline Phosphomonoesterases Activities in soil. Bull. Environ. Contam. Toxicol., 75, 1067-1076. DOI:
  16. Megharaj, M., Venkateswarlu, K. and Rao, A. S., (1987). Metaboilsm of monocrotophos and quinalphos by algae isolated from soil. Bull. Environ. Contam. Toxicol., 39, 251-256. DOI:
  17. Parekh, N. R., Walker, A. A., Roberts, S. J. and Welch, S. J., (1994). Rapid degradation of the triazinone herbicide metamitron by Rhodococcus sp. isolated from treated soil. J. Appl. Bacteriol.77,467-475. DOI:
  18. Rangaswamy, V. and Venkateswarlu, K., (1992). Degradation of selected insecticides by bacteria isolated from soil. Bull. Environ. Contam. Toxicol., 49,797-804. DOI:
  19. Rosenberg, A. and Alexander, M., (1979). Microbial cleavage of various organophosphorus insecticides. Appl. and Environ. Microbiol.,37(5),886-891. DOI:
  20. Schimdt, K. J., (1972). Structure and activity or some phosphates and phosphonates in the series of Azanaphthols. Pro. 2nd Int. IUPAC Cong. Pest. Chem. (Tahori, A.S., Ed.). Gordon and Breach, New York. 1, 365-379.
  21. Sethunathan, N. and Yoshida, T. (1973). A. flabobacterium sp. degrades diazinon and parathion. Can. J. Microbiol.,19, 873-875. DOI:
  22. Srivastava, A. K., Rampal, S. and Malik, J. K., (1989). Blood esterase in calves during repeated administration of quinalphos. Indian Vet. J. 66(2), 119-122.
  23. Subhas and Singh, D. K., (2003). Utilization of monocrotophos as phosphorus source by Pseudomononas aeruginosa F10B and Clavibacter michiganense subsp. inidiosum SBL 11. Can. J. Microbiol. 49, 01-09. DOI:
  24. Walkley, A. and Black, I. A., (1934). An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci.,34, 29-38. DOI: