Main Article Content


Providing food for the growing population is a challenging task, however, with historical agricultural practices, we can’t meet the food requirement of the world population. We are in the need to adopt modern technology to overcome adverse climatic and cultural challenges, which are faced by current generation, that is Artificial Intelligence (AI). AI is the booming technology in the agriculture, which uses different sensors and neural networks and uses resources minimally based on need and predict the coming obstacles, which causes huge loss to crop. This review explain is, various applications of AI in the sustainable agriculture for crop managemen by overcoming realtime challenges and importance of AI in agriculture by comparing with traditional methods.



artificial intelligence Food production Agricultural problems Technology I

Article Details

How to Cite
Kotte, B., A, N., V, S. A., Hema Lingireddy, K V, G., Abhijeet Mudhale, B, G. S., & E, A. (2024). Artificial intelligence (AI) and its applications in agriculture: A Review . Environment Conservation Journal, 25(1), 274–288.


  1. Alreshidi, E. (2019). Smart Sustainable Agriculture (SSA) Solution Underpinned by Internet of Things (IoT) and Artificial Intelligence (AI). International Journal of Advanced Computer Science and Applications, 10(5). DOI:
  2. Andresen, S. L. (2002). John McCarthy: Father of AI. IEEE Intelligent Systems, 17(5), 84–85. DOI:
  3. Balleda, D., Satyanvesh, N. V. S. S. P., Sampath, K. T. N. V., & Baruah, P. K. Agpest, (2014). An efficient rule-based expert system to prevent pest diseases of rice and wheat crops, 8th International Conference on Intelligent Systems and Control., Coimbatore, India. DOI:
  4. Behrens, T., Förster, H., Scholten, T., Steinrücken, U., Spies, E., & Goldschmitt, M. (2005). Digital soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil Science, 168(1), 21–33. DOI:
  5. Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing artificial intelligence. MIS Quarterly, 45, 1433–1450.
  6. Bernardo, R. (2008). Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Science, 48(5), 1649–1664. DOI:
  7. Bestelmeyer, B. T., Marcillo, G., McCord, S. E., Mirsky, S., Moglen, G., Neven, L. G., Peters, D., Sohoulande, C., & Wakie, T. (2020). Scaling up agricultural research with artificial intelligence. IT Professional, 22(3), 33–38. DOI:
  8. Bhat, J. A., Yu, D., Bohra, A., Ganie, S. A., & Varshney, R. K. (2021). Features and applications of haplotypes in crop breeding. Communications Biology, 4(1), 121266. DOI:
  9. Bilgili. (2011). The use of artificial neural network for forecasting the monthly mean soil temperature in Adana, Turkey. Turkish Journal of Agriculture and Forestry, 35(1), 83–93. DOI:
  10. Bishop, R., Gansing, K., Parikka, J., & Wilk, E. (Eds.). (2016). Across and beyond: A transmediale reader on post-digital practices, concepts, and institutions (pp. 11–16). Sternberg Press.
  11. Blessy, A., & Kumar, A. (2021). Smart Irrigation System Techniques using Artif icial Intelligence and IoT. IEEE Xplore. 9388444 Retrieved November 20, 2021
  12. Brazeau. (2018). Fighting weeds: Can we reduce, or even eliminate, herbicides by utilizing robotics and AI.
  13. Chang, D., & Islam, S. (2000). Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sensing of Environment, 74(3), 534–544. DOI:
  14. Clara. (2019). Applications of artificial intelligence in agriculture: A review. Technology & Applied Science Research, 9(4), 4377–4383.
  15. Cravero, A., & Sepúlveda, S. (2021). Use and adaptations of machine learning in big data—Applications in real cases in agriculture. Electronics, 10(5), 552. DOI:
  16. Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., De Los Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R. K. (2017). Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22(11), 961–975. DOI:
  17. Dai, X., Huo, Z., & Wang, H. (2011). Simulation of response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Research, 121(3), 441–449. DOI:
  18. de Carvalho, R. R. B., Marmolejo Cortes, D. F., Bandeira E Sousa, M. B. E., de Oliveira, L. A., & de Oliveira, E. J. (2022). Image based phenotyping of cassava roots for diversity studies and carotenoids prediction. PLOS ONE, 17(1), e0263326. DOI:
  19. Dobbels, A. A., & Lorenz, A. J. (2019). Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system. Plant Methods, 15, 97. DOI:
  20. Eisenhauer & Suat Irmak, (2021). Irrigation efficiency and uniformity, and crop water use efficiency, extension soil and water resources and irrigation engineering specialist.
  21. El Bilali, H., & Allahyari, M. S. (2018). Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Information Processing in Agriculture, 5(4), 456–464. [CrossRef. DOI:
  22. Eli-Chukwu, N., & Ogwugwam, E. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology and Applied ence Research, 9(4), 4377–4383. DOI:
  23. Elijah, O., Member, S., Institute of Electrical and Electronics Engineers et al. (2018), PP(99). An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of Things Journal, 1–1.
  24. Elshorbagy, A., & Parasuraman, K. (2008). On the relevance of using artificial neural networks for estimating soil moisture content. Journal of Hydrology, 362(1–2), 1–18. DOI:
  25. Esposito, S., Carputo, D., Cardi, T., & Tripodi, P. (2019). Applications and trends of machine learning in genomics and phenomics for next-generation breeding. Plants, 9(1), 34. DOI:
  26. Faulkner, A., Cebul, K., & McHenry, G. (2014). Agriculture gets smart: The rise of data and robotics; cleantech agriculture report. Cleantech Group.
  27. Gerhards, S. (2003). Christensen, Real-time weed detection, decision- making and patch-spraying in maize, sugar beet, winter wheat and winter barley, Wiley Online Library, 43(6), 385–392. DOI:
  28. Ghosh, & Singh, A. (2020). ‘The scope of Artificial Intelligence in mankind: A detailed review,’ NASA ADS, 1531 p. 012045. DOI:
  29. Gouravmoy, U. (2018). Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies IJSRCSAMS, 7(3), 1, and Sarkar.
  30. Harfouche, A. L., Jacobson, D. A., Kainer, D., Romero, J. C., Harfouche, A. H., Scarascia Mugnozza, G. S., Moshelion, M., Tuskan, G. A., Keurentjes, J. J. B., & Altman, A. (2019). Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends in Biotechnology, 37(11), 1217–1235. DOI:
  31. Hasan, M. M., Chopin, J. P., Laga, H., & Miklavcic, S. J. (2018). Detection and analysis of wheat spikes using Convolutional Neural Networks. Plant Methods, 14, 100. DOI:
  32. Henten, Hemming, Tuijl, Kornet, Meuleman, Bontsema, EA versus Os. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Springer.
  33. Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019). Machine learning and artificial intelligence to aid climate change research and preparedness. Environmental Research Letters, 14(12), 124007. DOI:
  34. Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., Timlin, D. J., Shim, K. M., Gerber, J. S., Reddy, V. R., & Kim, S. H. (2016). Random forests for global and regional crop yield predictions. PLOS ONE, 11(6), e0156571. DOI:
  35. Jesus, T., & Panagopoulos, A. Neves. (2008). Fuzzy logic and geographic information systems for pest control in olive culture, 4th IASME/WSEAS International Conference on Energy, Environment, Ecosystems y Sustainable Development, Algarve, Portugal.
  36. Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in a griculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1–12. DOI:
  37. Ji, B., Sun, Y., Yang, S., & Wan, J. (2007). Artificial neural networks for rice yield prediction in mountainous regions. Journal of Agricultural Science, 145(3), 249–261. DOI:
  38. Karimi, Y., Prasher, S. O., Patel, R. M., & Kim, S. H. (2006). Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture, 51(1–2), 99–109. DOI:
  39. Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artific ial intelligence in medicine. Gastrointestinal Endoscopy, 92(4), 807–812. DOI:
  40. Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9), 4883. DOI:
  41. Kolhe, S., Kamal, R., Saini, H. S., & Gupta, G. K. (2011). A web-based intelligent disease-diagnosis system using a new fuzzy-logic based approach for drawing the interferences in crops. Computers and Electronics in Agriculture, 76(1), 16–27. DOI:
  42. Kolhe, S., Kamal, R., Saini, H. S., & Gupta, G. K. (2011). An intelligent multimedia interface for fuzzy-logic based inference in crops. Expert Systems with Applications, 38(12), 14592–14601. DOI:
  43. Kukar, M., Kononenko, I., & Grošelj, C. (2011). Modern parameterization and explanation techniques in diagnostic decision support system: A case study in diagnostics of coronary artery disease. Artificial Intelligence in Medicine, 52(2), 77–90. DOI:
  44. Kumar, J., Pratap, A., & Kumar, S. (2015). Plant phenomics: An overview. In J. Kumar, A. Pratap & S. Kumar (Eds.), Phenomics in crop plants: Trends (pp. 1–10). Springer: Options and Limitations DOI:
  45. Lal, H., Jones, J. W., Peart, R. M., & Shoup, W. D. (1992) FARMSYS—A whole-farm machinery management decision support system. Agricultural Systems, 38(3), 257–273. DOI:
  46. Levine, E. R., Kimes, D. S., & Sigillito, V. G. (1996). Classifying soil structure using neural networks. Ecological Modelling, 92(1), 101–108. DOI:
  47. Li, M., & Yost, R. S. (2000) Management-oriented modeling: Optimizing nitrogen management with artificial intelligence. Agricultural Systems, 65(1), 1–27. DOI:
  48. Liu, S. Y. (2020). Artificial intelligence (AI) in agriculture. IT Professional, 22(3), 14–15. DOI:
  49. Liu, X. Y., Ge, Y., & Miao, Y. (2006). An artificial neural network–based expert system for fruit tree disease and insect pest diagnosis, International Conference on Networking, Sensing and Control., Lauderdale, United States.
  50. López, E. M., García, M., Schuhmacher, M., & Domingo, J. L. (2008). A fuzzy expert system for soil characterization. Environment International, 34(7), 950–958. DOI:
  51. López-granados, F. (2011). Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Research, 51(1), 1–11. DOI:
  52. Lu, Y. (2019). Artificial intelligence: A survey on evolution, models, applications and future trends. Journal of Management Analytics, 6(1), 1–29. DOI:
  53. Mentsiev, A. U., Amirova, E. F., & Afanasev, N. V. (2020). Digitalization and mechanization in agriculture industry. IOP Conference Series: Earth and Environmental Science. DOI:
  54. Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829. DOI:
  55. Meyer, R. S., DuVal, A. E., & Jensen, H. R. (2012). Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytologist, 196(1), 29–48. DOI:
  56. Moallem, P., & Razmjooy, N. (2012) A Multi Layer Perceptron Neural Network Trained by Invasive Weed Optimization for Potato Color Image Segmentation. Trends in Applied Sciences Research, 7(6), 445–455. DOI:
  57. Montas, H., & Madramootoo, C. A. (1992) A decision support system for soil conservation planning. Computers and Electronics in Agriculture, 7(3), 187–202. DOI:
  58. Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Gianola, D., Hernández-Suárez, C. M., & Martín-Vallejo, J. (2018). Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits. G3, 8(12), 3829–3840. DOI:
  59. Montoya-Cavero, L.-E., Díaz de León Torres, R., Gómez-Espinosa, A., & Escobedo Cabello, J. A. (2022). Vision systems for harvesting robots: Produce detection and localization. Computers and Electronics in Agriculture, 192, 106562. DOI:
  60. Moran, P., & Smith, C. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions, Royal Society of Edinburgh, 52, 399–438. DOI:
  61. Munirah, M. Y., Rozlini, M., & Siti, Y. M. (2013). An expert system development: Its application on diagnosing oyster mushroom diseases, 13th International Conference on Control., Automation and Systems, Gwangju, South Korea. DOI:
  62. Ortiz, P., Gutierrez, P. A., Pena, J. M., Sanchez, J. T., Granados, F. L., & Martinez, C. H. (December 6–9, 2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles, Symposium Series on Computational Intelligence. Athens, Greece.
  63. Papageorgiou, E. I., Markinos, A. T., & Gemtos, T. A. (2011). Fuzzy cognitive map based approach for predicting crop production as a basis for decision support system in precision agriculture application. Applied Soft Computing, 11(4), 3643–3657. DOI:
  64. Partel, V., Charan Kakarla, S., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture, 157, 339–350. DOI:
  65. Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., & Stentz, A. (2002). The Demeter system for automated harvesting. Springer.
  66. Plant, R. E. (1989). An artificial intelligence based method for scheduling crop management actions. Agricultural Systems, 31(1), 127–155. DOI:
  67. Priya, R., & Ramesh, D. J. S. C. I. (2020). ML based sustainable precision agriculture: A future generation perspective. Sustain. Computing and Informatics, 28, 100439. DOI:
  68. Reinoso-Peláez, E. L., Gianola, D., & González-Recio, O. (2022). Genome-enabled prediction methods based on machine learning. In Biology, N. Ahmadi & J. Bartholomé (Eds.), Genomic prediction of complex traits; methods in molecular, 2467, 189–218. Humana Press. DOI:
  69. Selvaraj, M. G., Valderrama, M., Guzman, D., Valencia, M., Ruiz, H., & Acharjee, A. (2020). Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and belowground traits in cassava (Manihot esculenta Crantz). Plant Methods, 16, 87. DOI:
  70. Sharma, R. (2021). Artificial Intelligence in Agriculture: A review. IEEE Xplore. document/9432187?casa_token=J9Nbv7WxGUkAAAAA:MKMZvBiZ8sQU6 RBKz-yE4tTgJrtDiLFIZsfiHCdgYD7 VWwP6vITCAa - lk9jR2HQ0gWfgRQ4V.
  71. Shaw, J., Rudzicz, F., Jamieson, T., & Goldfarb, A. (2019). Artificial intelligence and the implementation challenge. Journal of Medical Internet Research, 21(7), e13659. DOI:
  72. Shekhar, Y., Dagur, E., Mishra, S., Tom, R., Sankaranarayanan, S., & Professor, A. (2017). Intelligent IoT based automated irrigation system. International Journal of Applied Engineering Research., 12 (pp. 7306–7320).
  73. Siraj, N. Arbaiy. (2006). Integrated Pest Management System Using Fuzzy Expert System, Knowledge Management International Conference y Exhibition, Kuala Lumpur, Malaysia.
  74. Snehal, S. S., & Sandeep, S. V. (2014). Agricultural crop yield prediction using artificial neural network approach. International Journal of Innovative Research in Electrical Electronics Instrumentation and Control Engineering, 2(1), 683–686.
  75. Song, H., & He, Y. (2005). Crop nutrition diagnosis expert system based on artificial neural networks, 3rd International Conference on Information Technology and Applications, Sydney, Australia.
  76. Stergiou, C., & Psannis, K. E. (2017). Recent advances delivered by Mobile Cloud computing and internet of things for big data applications: A survey. International Journal of Network Management, 27(3), e1930. DOI:
  77. Stigliani, C. (1993). Resina. Seloma, Weed Technology, 7(3), 550–559. DOI:
  78. Supriya, M., & Deepa, A. (2020). Machine learning approach on healthcare big data: A review. Big Data and Information Analytics, 5(1), 58–75. DOI:
  79. Tajik, S., Ayoubi, S., & Nourbakhsh, F. (2012). Prediction of soil enzymes activity by digital terrain analysis: Comparing artificial neural network and multiple linear regression models. Environmental Engineering Science, 29(8), 798–806. DOI:
  80. Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4(April), 58–73.
  81. Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. DOI:
  82. Tobal, M., & Mokhtar, S. A. (2014). Weeds identification using evolutionary artificial intelligence algorithm. Journal of Computer Science, 10(8), 1355–1361. DOI:
  83. Virparia. (2007). A web based fuzzy expert system for insect pest management in groundnut crop “prajna”. Journal of Pure & Applied Sciences, 15, 36–41.
  84. Waleed, M., Um, T.-W., Kamal, T., Khan, A., & Iqbal, A. (2020). Determining the precise work area of agriculture machinery using Internet of things and artificial intelligence. Applied Sciences, 10(10), 3365. DOI:
  85. Wallace, J. G., Rodgers-Melnick, E., & Buckler, E. S. (2018). On the road to Breeding 4.0: Unravelling the good, the bad, and the boring of crop quantitative genomics. Annual Review of Genetics, 52, 421–444. DOI:
  86. Wang, M. Z., Zhu, J., & Geng, S. (2006). Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network. International Journal of Remote Sensing, 29(6), 1693–1706. DOI:
  87. Yang, C., Prasher, S. O., Landry, J. A., & Ramaswamy, H. S. (2003). Development of herbicide application map using artificial neural network and fuzzy logic. Agricultural Systems, 76(2), 561–574. DOI:
  88. Yang, C., Prasher, S. O., Laundry, J., & Ramaswamy, H. S. (2002). Development of neural networks for weed recognition in corn fields. American Society of Agricultural and Biological Engineers, 45(3), 859–864. DOI:
  89. Zargar, S. M., Raatz, B., Sonah, H., MuslimaNazir, J. A., Bhat, J. A., Dar, Z. A., Agrawal, G. K., & Rakwal, R. (2015). Recent advances in molecular marker techniques: Insight into QTL mapping, GWAS and genomic selection in plants. Journal of Crop Science and Biotechnology, 18(5), 293–308. DOI:
  90. Zhao, J., Bodner, G., & Rewald, B. (2016). Phenotyping: Using machine learning for improved pairwise genotype classification based on root traits. Frontiers in Plant Science, 7, 1864. DOI:
  91. Zhao, Z., Chow, T. L., Rees, H. W., Yang, Q., Xing, Z., & Meng, F. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture, 65(1), 36–48. DOI: