Main Article Content

Abstract

Seven plant growth-promoting bacterial strains (LES1-LES7) were isolated from rhizosphere of Lycoperscion esculentum Mill. (Tomato) and further screened based on colony morphology, carbon source utilization and biochemically characterized as fluorescent Pseudomonads. Among the isolates prominent strain identified as Pseudomonas aeruginosa LES4 produced maximum siderophores in vitro besides indole acetic acid, hydrocyanic acid, solubilized insoluble inorganic phosphate and secreted β-1, 3-glucanase urease and chitin solubilizing enzymes chitinase. It also exhibited a strong antagonism against Fusarium oxysporum f.sp. sesami when co-cultured on nutrient agar medium and inhibiting the growth of the pathogen by 69% after 5 days incubation at 28 ± 1°C. Sesame (Sesamum indicum L. cv. ST-1). When surface sterilized seeds bacterized with P. aeruginosa LES4 showed enhancement in seedling sprouting early vegetative growth, and increased seed yield components viz. biomass accumulation, and all other yield and quality improving components. Strain LES4 significantly reduced the wilt disease of sesame in F. oxysporum f.sp. sesami-infested soil. Moreover, Tn5 induced streptomycin resistant trans-conjugants of spontaneous tetracycline-resistant LES4 (designated LES4tetra+strep+) used to exhibit efficient rhizosphere colonization of sesame. Such properties of fluorescent P. aeruginosa LES4 prove it as a beneficial and potential microbial agent against wilt causing sesame.

Keywords

Pseudomonas aeruginosa Biocontrol sesame Wilt diseases Oil seed crops

Article Details

How to Cite
Kumar, S., Banerjee , C., & Vishnoi, V. K. (2023). Biological control of Fusarium-wilt and quality improvement of Sesamum indicum cv. ST-1 using fluorescent Pseudomonas. Environment Conservation Journal, 24(2), 364–372. https://doi.org/10.36953/ECJ.23732614

Funding data

References

  1. Armstromg, J.K., Armstrong, G.M. (1950) A Fusarium wilt of sesame in the United States. Phytopathol 40:785 (Abstract).
  2. Arora, N. K., Kim, M. J., Kang, S. C., & Maheshwari, D. K. (2007). Role of chitinase and β-1, 3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Canadian Journal of Microbiology, 53(2), 207-212. DOI: https://doi.org/10.1139/w06-119
  3. Ayala, S., & Rao, E. P. (2002). Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Current Science, 82(7), 797-807.
  4. Bakker, P. A. H. M., Lamers, J. G., Bakker, A. W., Marugg, J. D., Weisbeek, P. J., & Schippers, B. (1986). The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Netherlands Journal of Plant Pathology, 92, 249-256. DOI: https://doi.org/10.1007/BF01977588
  5. Bano, N., & Musarrat, J. (2003). Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Current Microbiology, 46, 0324-0328. DOI: https://doi.org/10.1007/s00284-002-3857-8
  6. Barnett, H. L., & Hunter, B. B. (1972). Illustrated genera of imperfect fungi. Illustrated genera of imperfect fungi., (3rd ed)., Burgess publishing company.
  7. Bateman, G. L., Ward, E., & Kwaśna, H. (1996). Relationships among Fusarium spp. estimated by comparing restriction fragment length polymorphisms in polymerase chain reaction-amplified nuclear rDNA. Canadian Journal of Microbiology, 42(12), 1232-1240. DOI: https://doi.org/10.1139/m96-159
  8. Duhoon, S. S., Jyotishi, A., Deshmukh, M. R., & Singh, N. B. (2004, September). Optimization of sesame (Sesamum indicum L.) production through bio/natural inputs. In Proceedings of the 4th International Crop Science Congress Brisbane, Australia (Vol. 26).
  9. Dunne, C., Crowley, J. J., Moënne-Loccoz, Y., Dowling, D. N., Bruijn, S., & O'Gara, F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology, 143(12), 3921-3931. DOI: https://doi.org/10.1099/00221287-143-12-3921
  10. El-Shazly, M. S., Wahid, O. A., El-Ashry, M. A., Ammar, S. M., & El-Barmawy, M. A. (1999). Evaluation of resistance to Fusarium wilt disease in sesame germplasm. International Journal of Pest Management, 45(3), 207-210. DOI: https://doi.org/10.1080/096708799227806
  11. Fridlender, M., Inbar, J., & Chet, I. (1993). Biological control of soilborne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biology and Biochemistry, 25(9), 1211-1221. DOI: https://doi.org/10.1016/0038-0717(93)90217-Y
  12. Grichar, W. J., Sestak, D. C., Brewer, K. D., Besler, B. A., Stichler, C. R., & Smith, D. T. (2001a). Sesame (Sesamum indicum L.) tolerance and weed control with soil-applied herbicides. Crop protection, 20(5), 389-394.
  13. Grichar, W. J., Sestak, D. C., Brewer, K. D., Besler, B. A., Stichler, C. R., & Smith, D. T. (2001b). Sesame (Sesamum indicum L.) tolerance and weed control with soil-applied herbicides. Crop protection, 20(5), 389-394. DOI: https://doi.org/10.1016/S0261-2194(00)00147-2
  14. Gupta, C. P., Kumar, B., Dubey, R. C., & Maheshwari, D. K. (2006). Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC 1 against Sclerotinia sclerotiorum causing stem rot of peanut. Bio Control, 51, 821-835. DOI: https://doi.org/10.1007/s10526-006-9000-1
  15. Gupta, C. P., Sharma, A., Dubey, R. C., & Maheshwari, D. K. (1999). Pseudomonas aeruginosa (GRC-1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios-cambridge, 183-189.
  16. Gupta, C. P., Sharma, A., Dubey, R. C., & Maheshwari, D. K. (2001). Effect of metal ions on growth of Pseudomonas aeruginosa and siderophore and protein production. Indian Journal of Experimental Biology, 39: 1318-1321.
  17. Gupta, C., Dubey, R., & Maheshwari, D. (2002). Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biology and Fertility of soils, 35, 399-405. DOI: https://doi.org/10.1007/s00374-002-0486-0
  18. Höfte, M., Seong, K. Y., Jurkevitch, E., & Verstraete, W. (1991). Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK 2: Ecological significance in soil. Plant and soil, 130, 249-257. DOI: https://doi.org/10.1007/BF00011880
  19. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley J.T., and Williams, S.T. (1994). In: Bergey's Manual of Determinative Bacteriology. Williams and Wilkins Press, Baltimore, USA.
  20. Howell, C. R., & Stipanovic, R. D. (1980). Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology, 70(8), 712-715. DOI: https://doi.org/10.1094/Phyto-70-712
  21. Jyothi, B., Ansari, N. A., Vijay, Y., Anuradha, G., Sarkar, A., Sudhakar, R., & Siddiq, E. A. (2011). Assessment of resistance to Fusarium wilt disease in sesame (Sesamum indicum L.) germplasm. Australasian Plant Pathology, 40, 471-475. DOI: https://doi.org/10.1007/s13313-011-0070-x
  22. Kartha, A. R. S., & Sethi, A. S. (1957). A cold percolation method for rapid gravimetric estimation of oil in small quantities of oil seeds. Indian Journal of Agricultural Science, 27, 211-217.
  23. Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in biotechnology, 7(2), 39-44. DOI: https://doi.org/10.1016/0167-7799(89)90057-7
  24. Kloepper, J.W., R. Lifshitz and A. Novacky, (1988). Pseudomonas inoculation to benefit plant production. Animal Plant Science,7, 60-64.
  25. Kumar, A., Vij, N., & Randhawa, G. S. (2003). Isolation and symbiotic characterization of transposon Tn5-induced arginine auxotrophs of Sinorhizobium meliloti. Indian Journal of Experimental Biology, 41, 1198-1204.
  26. Kumar, B. D., & Dube, H. C. (1992). Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biology and Biochemistry, 24(6), 539-542. DOI: https://doi.org/10.1016/0038-0717(92)90078-C
  27. Kumar, S., Aeron, A., Pandey, P., & Maheshwari, D. K. (2011). Ecofriendly management of charcoal rot and Fusarium wilt diseases in Sesame (Sesamum indicum L.). Bacteria in agrobiology: crop ecosystems, 387-405. DOI: https://doi.org/10.1007/978-3-642-18357-7_14
  28. Kumar, S., Pandey, P., & Maheshwari, D. K. (2009). Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. European Journal of Soil Biology, 45(4), 334-340. DOI: https://doi.org/10.1016/j.ejsobi.2009.04.002
  29. Kumar, T., Bajpai, V. K., Maheshwari, D. K., & Kang, S. C. (2005). Plant growth promotion and suppression of root disease complex due to Meloidogyne incognita and Fusarium oxysporum by fluorescent pseudomonads in tomato. Journal of Applied Biological Chemistry, 48(2), 79-83.
  30. Lim, H. S., & Kim, S. D. (1995). The role and characterization of. betha.-1, 3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri YPL-1. Journal of Microbiology, 33(4), 295-301.
  31. Lim, H. S., & Kim, S. D. (1997). Role of siderophores in biocontrol of Fusarium solani and enhanced growth response of bean by Pseudomonas fluorescens GL20. Journal of Microbiology and Biotechnology, 7(1), 13-20.
  32. Lim, H. S., Lee, J. M., & Dal Kim, S. (2002). A plant growth-promoting Pseudomonas fluorescens GL20: mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. Journal of microbiology and biotechnology, 12(2), 249-257.
  33. Maheshwari, D. K., Dubey, R. C., Aeron, A., Kumar, B., Kumar, S., Tewari, S., & Arora, N. K. (2012). Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World Journal of Microbiology and Biotechnology, 28, 3015-3024. DOI: https://doi.org/10.1007/s11274-012-1112-4
  34. Miller, R.L., Higgins, B.B. (1970) Association of cyanide with infection of birds foot trefoil by Stemphylium loti. Phytopathology60:104-110. DOI: https://doi.org/10.1094/Phyto-60-104
  35. Pikovskaya, R.I. (1948) Mobilization of phosphorus and soil in connection with the vital activity of some microbial species. Microbiology, 17, 362-370.
  36. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
  37. Selvaraj, G., & Iyer, V. N. (1983). Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. Journal of Bacteriology, 156(3), 1292-1300. DOI: https://doi.org/10.1128/jb.156.3.1292-1300.1983
  38. Shinde, R., Pardeshi, A., Dhanshetty, M., Anastassiades, M., & Banerjee, K. (2021). Development and validation of an analytical method for the multiresidue analysis of pesticides in sesame seeds using liquid-and gas chromatography with tandem mass spectrometry. Journal of Chromatography A, 1652, 462346. DOI: https://doi.org/10.1016/j.chroma.2021.462346
  39. Siddiqui, I. A., Qureshi, S. A., Sultana, V., Ehteshamul-Haque, S., & Ghaffar, A. (2000). Biological control of root rot-root knot disease complex of tomato. Plant and Soil, 227, 163-169. DOI: https://doi.org/10.1023/A:1026599532684
  40. Skidmore, A. M., & Dickinson, C. H. (1976). Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Transactions of the British Mycological Society, 66(1), 57-64. DOI: https://doi.org/10.1016/S0007-1536(76)80092-7
  41. Upadhyay, R. S., & Jayaswal, R. K. (1992). Pseudomonas cepacia causes mycelial deformities and inhibition of conidiation in phytopathogenic fungi. Current Microbiology, 24, 181-187. DOI: https://doi.org/10.1007/BF01579279
  42. Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 73(3), 463-469. DOI: https://doi.org/10.1094/Phyto-73-463