Main Article Content

Abstract

Green approach of zinc oxide nanoparticle fabrication is a reliable reaction that has compatibility with many biological properties. In the present study the approach of zinc oxide nanoparticle has been synthesized by A. arvensis aerial part using ethanol extract. The morphological, compositional and structural properties have been investigated by SEM, XRD, and FTIR studies. XRD technique demonstrated the crystallite size of 17nm with the help of Debye-Scherrer's equation which was obtained in nanorange. SEM technique demonstrated their microscopic agglomerated crystal image of green synthesizes metal in zinc oxide nanoparticle. FTIR technique represents the different types of biomolecules i.e. phenol, alkynes etc. that are responsible for good nanoparticle fabrication. These biomolecules work as encapsulation and stabilization agents for nanoparticle fabrication. These all properties of nanoparticle fabrication have been responsible for the antimicrobial activity.

Keywords

Anagallis arvensis Antibacterial property FTIR Green fabrication Klebsiella pneumonie Zinc oxide nanoparticle

Article Details

How to Cite
Sharma, P., Kumar, S., & Bithel, N. (2023). Green fabrication of zinc oxide nanoparticles by Anagallis arvensis ethanolic extract and their antibacterial properties. Environment Conservation Journal, 24(2), 343–346. https://doi.org/10.36953/ECJ.23592586

References

  1. Archana, S. & Abraham, J. (2011). Comparative analysis of antimicrobial activity of leaf extracts from fresh green tea, commercial green tea and black tea on pathogens. Journal of Applied Pharmaceutical Science.1:149-152.
  2. Awwad, A. M., Amer, M. W., Salem, N. M., & Abdeen, A. O. (2020). Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem. Int, 6(3): 151-159.
  3. Barzinjy, A. A., & Azeez, H. H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulusLabill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5): 991. DOI: https://doi.org/10.1007/s42452-020-2813-1
  4. Chang, S. P., & Chen, K. J. (2012). Zinc oxide nanoparticle photodetector. Journal of Nanomaterials, 1-1. DOI: https://doi.org/10.1155/2012/602398
  5. Dadi, R., Azouani, R., Traore, M., Mielcarek, C., & Kanaev, A. (2019). Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negativestrains. Materials Science and Engineering: C, 104, 109968. DOI: https://doi.org/10.1016/j.msec.2019.109968
  6. Degefa, A., Bekele, B., Jule, L. T., Fikadu, B., Ramaswamy, S., Dwarampudi, L. P., Nagaprasad, N., & Ramaswamy, K. (2021). Green synthesis, characterization of zinc oxide nanoparticles, and examination of properties for dye-sensitive solar cells using various vegetable extracts. Journal of Nanomaterials, 2021, 1-9. DOI: https://doi.org/10.1155/2021/3941923
  7. Iqbal, J., Abbasi, B. A., Yaseen, T., Zahra, S. A., Shahbaz, A., Shah, S. A., Uddin, S., Ma, X., Raouf, B., Kanwal, S., Almin, W., Mahmood, T., El-Serehy, H.A., & Ahmad, P. (2021) Green synthesis of zinc oxide nanoparticles using Elaeagnusangustifolia L. leaf extracts and their multiple in vitro biologica applications. Scientific Reports 11(1) 20988. DOI: https://doi.org/10.1038/s41598-021-99839-z
  8. Jiang, S., Lin, K., & Cai, M. (2020). ZnO nanomaterials: current advancements in antibacterial mechanisms and applications. Frontiers in Chemistry, 8, 580. DOI: https://doi.org/10.3389/fchem.2020.00580
  9. Kawashty, S. A., El-Garf, I. A., & El-Negoumy, S. I. (1998). Chemosystematics of Anagallisarvensis L. (Primulaceae). Biochemical systematics and ecology, 26 (6): 663-668. DOI: https://doi.org/10.1016/S0305-1978(98)00008-8
  10. Kharissova, O. V., Kharisov, B. I., Oliva González, C. M., Méndez, Y. P., & López, I. (2019). Greener synthesis of chemical compounds and materials. Royal Society open science, 6(11): 191378. DOI: https://doi.org/10.1098/rsos.191378
  11. Li, H., Wang, J., Liu, H., Yang, C., Xu, H., Li, X., & Cui, H. (2004). Sol–gel preparation of transparent zinc oxide films with highly preferential crystal orientation. Vacuum, 77(1): 57-62. DOI: https://doi.org/10.1016/j.vacuum.2004.08.003
  12. Li, T. T., Bao, N., Geng, A. F., Yu, H., Yang, Y., & Dong, X. T. (2018). Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization. Royal Society open science, 5(2): 171788. DOI: https://doi.org/10.1098/rsos.171788
  13. Marassi, V., Di Cristo, L., Smith, S. G., Ortelli, S., Blosi, M., Costa, A. L., Reschiglian, P., Volkov, Y., &Prina-Mello, A. (2018). Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. Royal Society open science, 5(1): 171113. DOI: https://doi.org/10.1098/rsos.171113
  14. Muhammad, W., Ullah, N., Haroon, M., &Abbasi, B. H. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC advances, 9(51): 29541-29548. DOI: https://doi.org/10.1039/C9RA04424H
  15. Perveen, R., Shujaat, S., Qureshi, Z., Nawaz, S., Khan, M. I., & Iqbal, M. (2020). Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. Journal of Materials Research and Technology, 9(4): 7817-7827. DOI: https://doi.org/10.1016/j.jmrt.2020.05.004
  16. Rajendran, N. K., George, B. P., Houreld, N. N., &Abrahamse, H. (2021). Synthesis of zinc oxide nanoparticles using Rubusfairholmianus root extract and their activity against pathogenic bacteria. Molecules, 26(10): 3029. DOI: https://doi.org/10.3390/molecules26103029
  17. Rahman, F., MajedPatwary, M. A., Bakar Siddique, M. A., Bashar, M. S., Haque, M. A., Akter, B., Rashid, R., Haque M A.., RoyhanUddin, A. K. M. (2022). Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. Royal Society Open Science, 9(11): 220858. https://doi.org/10.1098/rsos.220858. DOI: https://doi.org/10.1098/rsos.220858
  18. Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., &Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in chemistry, 5, 1-16. DOI: https://doi.org/10.3389/fchem.2017.00078
  19. Redfern, J., Kinninmonth, M., Burdass, D. & Verran, J. (2014). Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. Journal of microbiology & biology education, 15(1), 45-46. DOI: https://doi.org/10.1128/jmbe.v15i1.656
  20. Senthilkumar, S. R., & Sivakumar, T. (2014). Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci, 6(6): 461-465.
  21. Torres-Rivero, K., Bastos-Arrieta, J., Fiol, N., &Florido, A. (2021). Metal and metal oxide nanoparticles: an integrated perspective of the green synthesis methods by natural products and waste valorization: applications and challenges. Comprehensive analytical chemistry, 94, 433-469. DOI: https://doi.org/10.1016/bs.coac.2020.12.001