Main Article Content

Abstract

Being a pulse crop, green gram has huge scope in crop improvement in terms of productivity and other yield related parameters. Genetic variability is a preferable option for breeders in breeding programme for varietal development programme and others crop improvement aspect. The present investigation was framed to create the variability in mung bean var. GAM 8 during the seedling period through gamma (γ) irradiation. The significant variation was observed in germination percentage and it was found that dose dependent relationship between the germination rate and dose. Significantly minimum germination percentage (22.38 %) was observed in 700 Gy but optimal lethal dose (LD50) calculated through Probit analysis based on germination percentage was revealed at 540.26 Gy. Data revealed that γ irradiation had significantly reduced the seedling growth parameters such as shoot length (10.05 cm), shoot dry weight (19.68 mg), seedling length (13.90 cm), vigour index I (311.01) and II (509.01) was registered in 700 Gy while minimum root length (3.83 cm) was occurred in 600 Gy γ irradiation. Growth reduction (GR) 50 and 30 with respect to the seedling length was occurred respectively at 1093.79 and 1469.74 Gy. Therefore, this finding as the source of genetic variability would be used in future breeding and crop improvement programme like enhancement of yield potentiality and stress management in mung bean var. GAM 8.   

Keywords

Gamma irradiation Germination Green gram GR50 LD50

Article Details

How to Cite
Thounaojam, A. S., Patel, K. V., Solanki, R. U., Chaudhary, R. I., & Chavda, N. K. (2024). Response of gamma irradiation on germination and seedling growth of green gram var. GAM 8. Environment Conservation Journal, 25(1), 131–137. https://doi.org/10.36953/ECJ.23552612

References

  1. Ali, N., Dayal, A., Thomas, N., Lal, G.M. & Gupta, J. (2018). Effect of Different Sowing Time on Seed Vigour Parameters of Wheat (Triticum aestivum L.) Varieties. International Journal of Pure & Applied Bioscience, 6(2), 1532-1538. DOI: https://doi.org/10.18782/2320-7051.6627
  2. Anonymous (1999). ISTA-International rules of seed testing. Seed Science and Technology, 21:288.
  3. Arumuganathan, K., & Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9, 208-218. DOI: https://doi.org/10.1007/BF02672069
  4. Bonde, P. J., Thorat, B. S. & Gimhavnekar, V. J. (2020). Effect of Gamma Radiation on Germination and Seedling Parameters of Mung Bean (Vigna radiata). International Journal of Current Microbiology and Applied Sciences, Special Issue, 11, 1582-1587.
  5. Cheng, L., Yang, H., Lin, B., Wang, Y., Li, W., Wang, D. & Zhang, F. (2010). Effect of gamma-ray radiation on physiological, morphological characters and chromosome aberrations of minitubers in Solanum tuberosum L. International Journal of Radiation Biology, 86, 791-799. DOI: https://doi.org/10.3109/09553002.2010.484478
  6. Jain, A. K., Kumar, A., Chouhan, S. S. and Tripathi, S. K. (2017). Cultural characteristics and evaluation of Trichoderma isolates against Rhizoctonia solani Kühn causing banded leaf and sheath blight of Little Millet. Annals of Plant Protection Sciences, 25(1), 140-143.
  7. Khalil, S. A., Zamir, R. & Ahmad, N. (2014). Effect of different propagation techniques and gamma irradiation on major steviol glycoside’s content in Stevia rebaudiana. Journal of Animal and Plant Sciences, 24, 1743-1751.
  8. Kharte, S., Kumar, A., Sharma, S., Ramakrishnan, R. S., Kumar, S., Malvi, S., Singh Y. and Kurmi S. (2022). In vitro Evaluation of Fungicides and Bio-agents for the Management of Lentil Wilt caused by Fusarium oxysporum f. sp. lentis. Biological Forum – An International Journal, 14(4), 489-495.
  9. Khatri, A., Khan, I. A., Siddiqui, M. A. Raza, S. and Nizamani, G. S. (2005). Evaluation of high yielding mutants of Brassica juncea cv. S-9 developed through gamma rays and EMS. Pakistan Journal of Botany, 37, 279-284
  10. Kim, S. K., Nair, R. M., Lee, J. & Lee S. H. (2015). Genomic resources in mung bean for future breeding programs, Frontiers in Plant Science, 6, 626. DOI: https://doi.org/10.3389/fpls.2015.00626
  11. Kiong, A. L. P., Lai, A. G., Hussein, S. & Harun, A. R. (2008). Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. American-Eurasian Journal of Sustainable Agriculture, 2, 135-149.
  12. Kumar, A. and Sahu, T. K. (2015). Use of local isolates of Trichoderma from Madhya Pradesh against Rhizoctonia solani causing wet root rot of chickpea. Environment and Ecology, 33(4), 1553-1557.
  13. Kumar, A., Bohra, A., Mir, R. R., Sharma, R., Tiwari, A., Khan, M. W. and Varshney, R. K. (2021). Next generation breeding in pulses: Present status and future directions. Crop Breeding and Applied Biotechnology, 21(s), e394221S13. DOI: https://doi.org/10.1590/1984-70332021v21sa26
  14. Kumar, A., Jain, A. K., Sahu, T. K., Singh, T. K. and Shivcharan, S. (2013). Exploration of potential biocontrol agent Trichoderma spp. from Madhya Pradesh against Fusarium oxysporum f. sp. ciceris causing wilt of chickpea. Environment and Ecology, 31(2B), 877-882.
  15. Kumar, A., Patel, A., Singh, S. N. and Tiwari, R. K. (2019). Effect of Trichoderma spp. in Plant Growth Promotion in Chilli. International Journal of Current Microbiology and Applied Science, 8(3), 1574-1581. DOI: https://doi.org/10.20546/ijcmas.2019.803.182
  16. Kumari, V., Chaudhary, H. K., Prasad, R., Kumar, A., Singh, A., Jambhulkar, S. & Sanju, S. (2016). Effect of mutagenesis on germination, growth and fertility in sesame (Sesamum indicum L.). Annual Research & Review in Biology, 10, 1-9. DOI: https://doi.org/10.9734/ARRB/2016/26983
  17. Lavanya, G. R., Leena, Y., Suresh Babu, G. & Paul, P.J. (2011). Sodium azide mutagenic effect on biological parameters and induced genetic variability in mung bean. Journal of Food Legumes, 24(1), 46-49.
  18. Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor., Crop Science, 2, 176-177, DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x
  19. Mungikar, A. M. (1997). “An Introduction to Biometry”. Sarawati Printing Press, Aurangabad.
  20. Parthasarathi, G., Pillai, M. A., Kannan, R., Kumari, S. M. P. & Binodh, A. K. (2020). Optimal lethal dose determination for gamma rays and EMS induced mutagenesis in TMV7 and SVPR1 Sesame (Sesamum indicum L.) varieties. Current Journal of Applied Science and Technology, 136-44. DOI: https://doi.org/10.9734/cjast/2020/v39i2830947
  21. Pavadai, P., Girija, M. & Dhanavel, D. (2010). Effect of Gamma Rays on some Yield Parameters and Protein Content of Soybean in M2, M3 and M4 Generation. Journal of Experimental Sciences, 1, 8-11.
  22. Ramya, B., Nallathambi, G. & Ram, S. G. (2014). The effect of mutagens on M1 population of black gram (Vigno mungo L. Hepper). African Journal of Biotechnology, 13, 951-56. DOI: https://doi.org/10.5897/AJB2013.12785
  23. Robertson, J. L., Jones, M. M., Olguin, E. & Alberts, B. (2017). Bioassays with arthropods. 3rd ed. Boca Raton, FL: CRC Press, Taylor & Francis Group. DOI: https://doi.org/10.1201/9781315373775
  24. Rukesh, A. G., Abdul Rahuman, M., Christine Latitia, S. & Packiaraj, D. (2017). Impact of gamma irradiation induced mutation on morphological and yield contributing traits of two genotypes of green gram (Vigna radiata L.). Journal of Pharmacognosy and Phytochemistry, 6(6), 1229-1234.
  25. Senapati, N., Misra, R. C. & Muduli. K. C. (2008). Induced macromutation in balck gram (Vigna mungo (L.) Hepper). Legume Research, 31(4), 243-248.
  26. Shah, T. M., Mirza, J. I. Haq, M. A. & Atta, B. M. (2008). Induced genetic variability in chickpea (Cicer arietinum L.). II. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Pakistan Journal of Botany, 40, 605-613.
  27. Singh, B., Ahuja, S., Singhal, R. K. & Venu Babu, P. (2014). Radio sensitivity Studies and Radio stability of Ribulose-1,5Bis-Carboxylase and Gas Exchange Characteristics in Wheat, Garden Pea, Field Pea, Spinach, and Okra. Water Air Soil Pollution, 225:1815. DOI: https://doi.org/10.1007/s11270-013-1815-7
  28. Singh, H., Verma, P., Lal, S. K. & Khar, A. (2021). Optimization of EMS mutagen dose for short day onion. Indian Journal of Horticulture, 78(1), 35-40. DOI: https://doi.org/10.5958/0974-0112.2021.00005.0
  29. Srivastava, R., Joshi, M., Kumar, A., Pachauri, S. and Sharma, A. K. (2009). Biofertilizers for sustainable agriculture. In. Agricultural Diversification: Problems and Prospects (Eds. By A. K. Sharma, S. Wahab and R. Srivastava). I. K. International, New Delhi, pp: 57-71
  30. Tah, P. R. & Saxena. S. (2009). Induced synchronyin pod maturity in mung bean (Vigna radiata). International Journal of Agriculture and Biology, 11, 321-324.
  31. Tah, P.R., 2006. Studies on gamma ray induced mutation in mungbean (Vigna radiata (L.) Wilczek). Asian Journal of Plant Science, 5, 61-7. DOI: https://doi.org/10.3923/ajps.2006.61.70
  32. Yi-Shen, Z., Shuai, S. & FitzGerald, R. (2018). Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food & Nutrition Research., 62. DOI: https://doi.org/10.29219/fnr.v62.1290