Main Article Content


Estimating actual crop evapotranspiration is vital in water-scarce environment affected by climate change, particularly for optimizing irrigation and enhancing crop yield. This research focuses on assessing crop water and irrigation requirement for major crops across six districts of Madhya Pradesh, India, spanning diverse agro-climatic regions. Employing CLIMWAT 2.0 and CROPWAT 8.0 software, calculated crop evapotranspiration and devised irrigation strategies tailored to local climatic conditions. The FAO-Penman-Montieth (FAO-PM) equation for reference evapotranspiration (ET0), aiding in crop water requirement computation and irrigation planning. Our findings reveal substantial variations in crop water requirements across crops and districts. For instance, soybean in Indore requires the highest water input at 380 mm, while in Guna, was least at 303 mm. Wheat, on the other hand, register the highest water needs in Khandwa at 510.6 mm and the lowest in the Neemuch district at 370.8 mm, particularly during the rabi season. Besides that, this study underscores the need for district-specific considerations, taking into account climate and soil characteristics when formulating water management strategies. Employing efficient irrigation practices and techniques to manage water stress becomes imperative for optimizing crop yield and achieving economic returns. Implementing customized approaches to enhance water use efficiency and promote sustainability in agricultural production is crucial. These research outcomes provide valuable insights for policymakers, agricultural practitioners, and water resource managers to develop context-specific water management strategies.


Crop coefficient Effective rainfall Irrigation scheduling Net irrigation requirement Evapotranspiration

Article Details

How to Cite
Gaddikeri, V., Rajput, J., Dimple, Singh Jatav, M., Kumari, A., Rana, L., Rai, A., & Gangwar, A. (2024). Estimating crop water requirement in Madhya Pradesh’s agro-climatic regions: A CROPWAT and CLIMWAT software case study. Environment Conservation Journal, 25(1), 308–326.


  1. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO-Food and Agriculture Organisation of the United Nations, Rome (http://www. fao. org/docrep).
  2. Assefa, S., Biazin, B., Muluneh, A., Yimer, F., & Haileslassie, A. (2016).Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, 178(C), 325-334. DOI:
  3. Bana, R. S., Bamboriya, S. D., Padaria, R. N., Dhakar, R. K., Khaswan, S. L., Choudhary, R. L., & Bamboriya, J. S. (2022). Planting Period Effects on Wheat Productivity and Water Footprints: Insights through Adaptive Trials and APSIM Simulations”. Agronomy, 12(1), 226. DOI:
  4. Brye, K.R., Slaton, N.A., & R. J. (2005). Norman. Penetration resistance as affected by shallow-cut land levelling and cropping”. Soil Tillage Research., 81:1–13. DOI:
  5. Chakravarti, A., Rohilla, K., Singh, S. P., Singh, S. K., & Adeba, D. (2022). Estimation of crop water requirement for Bargi left bank canal command area-Jabalpur MP India. Energy Nexus, 6, 100068. DOI:
  6. Dasgupta, P., Das, B. S., & Sen, S. K. (2015). Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties”. Agricultural Water Management, 152, 110-118. DOI:
  7. Dhawan, V. (2017). Water and agriculture in India. In Background paper for the South Asia expert panel during the Global Forum for Food and Agriculture, 28.
  8. Diro, S.B., & Tilahun, K. (2009). Evaluation of the FAO CROPWAT model for defi cit-irrigation scheduling for onion crop in a semiarid region of Ethiopia”. Journal of Applied Horticulture, 11(2): 103-106. DOI:
  9. Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management”. Journal of Hydrology, 458, 110-117. DOI:
  10. Doorenbos, J., & Pruitt, W.O. (1977). Crop water requirements. Irrigation and drainage paper, 24, 1-144.
  11. Ewaid, S.H., Abed, S.A., & Al-Ansari, N. (2019). "Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq". Water 11, 4: 756. DOI:
  12. FAO (Food and Agriculture Organization). (2009). CROPWAT Software, Food and Agriculture Organization, Land and Water Division; Available at: 2009.
  13. .html . accessed on 26/03/2022.
  14. Gabr, M. E. (2022). Modelling net irrigation water requirements using FAO-CROPWAT 8.0 and CLIMWAT 2.0: a case study of Tina Plain and East South ElKantara regions, North Sinai, Egypt. Archives of Agronomy and Soil Science, 68(10), 1322-1337. DOI:
  15. Gaddikeri, V., Hasan, M., Kumar, D., Sarangi, A., & Alam, W. (2022). Performance Analysis and Measurement of Soil Moisture Content by Piezoresistive Sensor. MAPAN, 37(1), 149-160. DOI:
  16. Gangwar, A., Nayak, T. R., Singh, R. M., & Singh, A. (2017). Estimation of crop water requirement using CROPWAT 8.0 model for Bina command, Madhya Pradesh. Indian journal of Ecology, 44(4), 71-76.
  17. George, B. A., Shende, S. A., & Raghuwanshi, N. S. (2000). “Development and testing of an irrigation scheduling model". Agricultural water management, 46(2), 121-136. DOI:
  18. Jat, M. L., Singh, S., Rai, H.K., Chhokar, R. S., Sharma, S. K., & Gupta, R.K. (2005). Furrow irrigated raised bed planting technique for diversification of rice-wheat system of Indo-Gangetic Plains." Journal of Japan Association for International Cooperation for Agriculture and Forestry 28, no. 1: 25-42.
  19. Jensen, C. R., Battilani, A., Plauborg, F., Psarras, G., Chartzoulakis, K., Janowiak, F., & Andersen, M. N. (2010). Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes”. Agricultural Water Management, 98(3), 403-413. DOI:
  20. Jo, L., & Garry, J.O.L. (2003). Long-term comparison of rotation and fallow tillage system of wheat in Australia”. Field crops research, 83, 111–222. DOI:
  21. Kang, S.Z., Zhao, L., Liang, Y.L., Hu, X.T., Cai, H.J., & Gu, B.J. (2002). Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China”. Agricultural Water Management. 55, 203–216. DOI:
  22. Khan, W.A., Rahman, J.UI., Mohammed, M., Alhussain, Z.A., & Elbashir, M.K. (2021). Topological sustainability of crop water requirements and irrigation scheduling of some main crops based on the penman-monteith method", Journal of Chemistry, Vol. 2021, 12 Pages. DOI:
  23. Kumar, R., & Gautam, H. R. (2014). “Climate change and its impact on agricultural productivity in India”. Journal of Climatology & Weather Forecasting. 2:1. DOI:
  24. Kumar, S., Sharma, A., Kumar, K., & Oliveto, G. (2021). An Integrated Approach to Evaluating Crop Water Requirements and Irrigation Schedule for Optimizing Furrow Irrigation Design Parameters in Kurnool District, India. Water, 13(7), 925.
  25. Lawande, V. S. K. (2008). Effect of micro irrigation on growth, yield and water-use efficiency of onion (Allium cepa) under western Maharashtra conditions”. Indian Journal of Agricultural Sciences, 78(7), 584-8.
  26. Laxmi, V., Gupta, R.K., Swarnalatha, A., & Perwaz, S. (2003). “Environmental impact of improved technology - farm level survey and farmers’ perception on zero tillage (Case Study)”. Presented at Roles of Agriculture Workshop 20–22 October, 2003 - Rome, Italy.
  27. Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices”. Agricultural Water Management, 146, 84-94. DOI:
  28. Li, C., Wang, C., Wen, X., Qin, X., Liu, Y., Han, J., & Wu, W. (2017). Ridge–furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat–maize double–cropping system in dry semi–humid areas”. Field crops research, 203, 201-211. DOI:
  29. Ludwig, F., van Slobbe, E., & Cofino, W. (2014). Climate change adaptation and Integrated Water Resource Management in the water sector. Journal of Hydrology, 518, 235-242. DOI:
  30. Mahajan, G., Bharaj, T.S., & Timsina, J. (2009). Yield and water productivity of rice as affected by time of transplanting in Punjab, India”. Agriculture Water Management., 96: 525-532. DOI:
  31. Malik, R.K., Mehla, R.S., &B.K. Singh, B.K. (2002). Conservation tillage technologies and farmers participatory research, extension approaches in Haryana - A case study”. In RWC (ed.), Proceedings of the International Workshop on Developing an Action Program for Farm-level Impact in Rice-Wheat Systems of the Indo-Gangetic Plains, 25–27 September 2000, New Delhi, India. Rice-Wheat Consortium Paper Series 14. New Delhi, India: RWC. Pp. 31–45.
  32. Meena, R. P., Sharma, R. K., Chhokar, R. S., Chander, S., Tripathi, S. C., Kumar, R., & Sharma, I. (2015). Improving water use efficiency of rice-wheat cropping system by adopting micro-irrigation systems”. International Journal of Bio-resource and Stress Management, 6(3), 341-345. DOI:
  33. Mehla, R. S., Verma, J.K., Gupta., R. K., & Hobbs, P.R. (2000). Stagnation in the productivity of wheat in the Indo-Gangetic Plains: Zero-till-seed-cum-fertilizer drill as an integrated solution”. Rice-Wheat Consortium Paper Series 8. New Delhi, India: RWC.
  34. Nagarajan, S. A., Singh, R., & Singh, S. (2002). Impact evaluation of zero-tillage in wheat through farmers’ participatory mode”. In R.K. Malik, R.S. Balyan, A. Yadav, and S.K. Pahwa (eds.), Herbicide resistance management and zero tillage in rice-wheat cropping system. Hisar, India: CCSHAU, Pp. 150-154.
  35. Naik, B.R., Latha, T.H., & Babu, C.M. (2015). Command area development by using FAO CROPWAT 8.0 model and impact of climate change on crop water requirement-a case study on Araniar reservoir basin (Pichatur dam)”. International Journal of Applied Research; 1(13): 142-155.
  36. Oweis, T., & Hachum, A. (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa”, Agricultural Water Management, 80, 1–3:57-73. DOI:
  37. Pan, X.Y., Wang, G.X., Yang, H.M., & Wer, X.P. (2003). Effect of water deficits on within-plot variability in growth and grain yield of spring wheat in northwest China. Field Crops research. 80, 195–205. DOI:
  38. Patrick, G., Chales, G., Joseph, M., & Edword, M. (2004). Effects of soil management practices and tillage system on surface soil water conservation and crust formation on a sandy loam in semi-arid Kenya”. Soil and Tillage Research. 75, 99–186. DOI:
  39. Pawar, S. V., Patel, P. L., & Mirajkar, A. B. (2021). Estimation of Potential Evapotranspiration in command area of New Mutha Right Bank Canal, Pune, Maharashtra, India. HYDRO 2020 INTERNATIONAL, 25th International Conference on Hydraulics, Odisha, India, March 26-28.
  40. Prattoyee, F. T., Hasan, F. R. M. R., Nahid, I. K., & Faruq, M. O. (2021). “Modelling Net Irrigation Water Requirements and Irrigation Scheduling of Boro Rice Using FAO-CROPWAT 8.0 and CLIMWAT 2.0: A Case Study of Rajshahi Regions, Bangladesh”. Journal of Global Ecology and Environment, 13(2),1-11.
  41. Qin, W., Hu, C., & Oenema, O. (2015). Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Scientific reports, 5(1), 1-13. DOI:
  42. Rafeet, M. A. (2002). Salinity management under a trickle irrigation system. Colorado State University.
  43. Rahman, J., &Sarma. B. (2019). Assessment of crop water requirements and irrigation scheduling of dhanshiri basin”. Jetir, 6, 1:685-694. DOI:
  44. Rajput, J., Kothari, M., & Bhakar. S.R. (2017). Performance Evaluation of Water Delivery System for Command Area of Left Main Canal of Bhimsagar Irrigation Project, Rajasthan”. Journal of Agricultural Engineering, 54 (3):57-66. DOI:
  45. Rajput, J., Mishra, A.K., Dwivedi, N., Sharma, D. K., Singh, Y. V., Kumar, S., Rosin, K. G., & Mani, I. (2021). Potential irrigation command of pulp and paper mill treated effluent under conventional and pressurized irrigation techniques- A Case Study. International Journal of Tropical Agriculture, 39(4):329-333.
  46. Rajput, J., Kushwaha, N. L., Sikka, Alok., Alam, M. F., Mahapatra, S., Sena, D. R., Singh, D. K., & Mani, I. (2022). Water accounting of Kurukshetra district and assessing effects of sustainable interventions on water saving. Indian Journal of Soil Conservation. 50(2):91-10.
  47. Ratnaraju, C., Yella reddy, K., Satyanarayana, T.V., & Yogitha, P. (2016). Estimation of Crop Water Requirement Using CROPWAT Software in Appapuram Channel Command under Krishna Western Delta”. International Journal of Agriculture Sciences. 8,31:1644-1649, ISSN: 0975-3710 & E-ISSN: 0975-9107.
  48. RWC (Rice-Wheat Consortium of the Indo-Gangetic Plains). Highlights 2003–2004. New Delhi, India: Rice-Wheat Consortium for the Indo Gangetic Plains. 2004.
  49. Scanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality”. Water resources research, 43(3). DOI:
  50. Singandhape, R.B., Rao, G.G.S.N., Patil, N.G., & Brahmanand, P.S. (2003). Fustigation studies and irrigation scheduling in drip irrigation system in tomato crop. European. Journal of Agronomy. 19, 327–340. DOI:
  51. Singh, R., Singh, K., & Bhandarkar, D. M. (2014). Estimation of water requirement for soybean (Glycine max) and wheat (Triticum aestivum) under vertisols of Madhya Pradesh. Indian J Agr Sci, 84, 190-197. DOI:
  52. Sun, H., Shao, L., Liu, X., Miao, W., Chen, S., & Zhang, X. (2012). Determination of water consumption and the water-saving potential of three mulching methods in a jujube orchard”. European Journal of Agronomy, 43, 87-95. DOI:
  53. Surendran, U., Sandeep, O., Mammen, G., & Joseph, E.J. (2013). A novel technique of magnetic treatment of saline and hard water for irrigation and its impact on cow pea growth and water properties”. International Journal of Agriculture, Environment and Biotechnology 6: 85-92.
  54. Surendran, U., Sushanth, C. M., Mammen, G., & Joseph, E. J. (2015). Modelling the crop water requirement using FAO-CROPWAT and assessment of water resources for sustainable water resource management: A case study in Palakkad district of humid tropical Kerala, India. Aquatic Procedia, 4, 1211-1219. DOI:
  55. Thimmareddy, Hemareddy & Kg, Sumesh & Patil, R.H. & G., Dr & Haroli, Mahesh. (2022). Effect of Changing Climate on Water Requirement of Chickpea in North Interior Karnataka: Cropwat Model based Assessment. Legume research - an international journal. 10.18805/LR-4951. DOI:
  56. Thomas, T., Nayak, P. C., & Ghosh, N. C. (2014). Irrigation planning for sustainable rain-fed agriculture in the drought-prone Bundelkhand region of Madhya Pradesh, India. Journal of water and climate change, 5(3), 408-426. DOI:
  57. USDA. (1967). Irrigation water requirements. Tech. Release No. 21, United States Dept. of Agr., Soil Manage. 59 :67–75.
  58. Vibhute, S. D., Sarangi, A., & Singh, D.K. (2016). “Development of Crop Water Demand Based Water Delivery Schedule for a Canal Command”. Journal of Agricultural Engineering 53,2:12-23. DOI:
  59. Whitney, R.S., Gardner, R., and Robertson, D.W. (1950). The effectiveness of manure and commercial fertilizer in restoring the productivity of subsoils exposed by levelling”. Agronomy Journal., 42: 239–245. DOI:
  60. Xiao, G.J., Liu, W.X., Xu, Q., Sun, Z.J., & Wang, J. (2005). Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on rain-fed spring wheat yield in semiarid areas of China”. Agricultural Water Management. 74, 243–255. DOI:
  61. Xu, D., & Mermoud, A. (2003). Modeling the soil water balance based on time-dependent hydraulic conductivity under different tillage practices”. Agricultural Water Management,. 63, 139–151. DOI:
  62. Yadav, D., Awasthi, M. K., & Nema, R. K. (2018). Study on crop water requirement of field crops under different climatic conditions of Madhya Pradesh. Agricultural Science Digest-A Research Journal, 38(2), 81-87. DOI: