Main Article Content


This research paper presents an analysis of temperature variables over the West Banas basin in order to detect the presence of underlying trends employing historical temperature data for three points viz., Abu Road, Mount Abu and Pindwara obtained for a period of 40 years (1981 – 2020) from MERRA-2 database. The study aims to investigate the long-term changes in temperature trends and identify any significant patterns or anomalies in mean, maximum and minimum temperatures at monthly, seasonal and annual timescales at the three locations amounting to a total of 162 series. The trends were evaluated using the Mann-Kendall test, a popular and powerful statistical technique formulated for analysing abnormal distributions. Prior to the application of the trend test, autocorrelated time series were identified and the trend test was modified using a variance correction approach to incorporate the influence of autocorrelations upon the resultant trends. The findings of autocorrelation analysis revealed that 11 of the 162 series were autocorrelated, a majority of which were associated with the temperature series at Abu Road. The results of the trend test showed that 27 out of the 162 series possessed significant trends with the mean and maximum monsoon temperatures in most of the series exhibiting a reducing trend while the minimum temperature appeared to be rising. Overall, the research highlights the importance of monitoring temperature trends, particularly in regions that may be more vulnerable to the impacts of climate change. The findings of this study can inform future climate adaptation strategies and support decision-making processes aimed at mitigating the effects of global warming on the natural and built environment.


Autocorrelation Climate change Mann-Kendall test Temperature Trend analysis

Article Details

How to Cite
Upadhyay, H., Singh, P., Kothari, M., Bhakar, S., & Yadav, K. (2023). Investigation of trends in basin-scale temperature variables. Environment Conservation Journal, 24(4), 181–191.


  1. Baines, P.G. (2006). The late 1960s global climate shift and its influence on the Southern hemisphere. 8 ICSHMO, INPE, Foz do Iguaçu, Brazil.
  2. Basistha, A., Arya, D.S., & Goel, N.K. (2009). Analysis of historical changes in precipitation in the Indian Himalayas. International Journal of Climatology, 29(4), 555-572. DOI:
  3. Bosilovich, M.G., Lucchesi, R., Suarez, M. (2016). MERRA-2: File specification (GMAO Office Note 9). NASA Goddard Space Flight Center.
  4. Box, G.E.P., & Jenkins, G.M. (1970). Time series analysis: Forecasting and control. Holden-Day.
  5. Ebi, K.L., Hallegatte, S., Kram, T., Arnell, N.W., Carter, T.R., Edmonds, J., Kriegler, E., Mathur, R., O’Neill, B.C., Riahi, K., Winkler, H., Van Vuuren, D.P., & Zwickel, T. (2014). A new scenario framework for climate change research: background, process, and future directions. Climate Change, 122, 363-372. DOI:
  6. Gupta, A., Thapliyal, P.K., Pal, P.K., & Joshi, P.C. (2005). Impact of deforestation on Indian Monsoon - a GCM sensitivity study. The Journal of Indian Geophysical Union, 9(2), 97-104.
  7. Gupta, P., Verma, S., Bhatla, R., Chandel, A.S., Singh, J., & Payra, S. (2019). Validation of surface temperature derived from MERRA-2 reanalysis against IMD Gridded Data set over India. Earth and Space Science, 7(1), e2019EA000910. DOI:
  8. Haan, C.T. (2002). Statistical methods in hydrology. Iowa State University Press.
  9. Hamed, K.H., & Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4), 182-196. DOI:
  10. Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4), RG4004. DOI:
  11. Hardwick Jones, R., Westra, S., & Sharma, A. (2010). Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophysical Research Letters, 37, L22805.,2010. DOI:
  12. IPCC. (2014). Climate change 2014: Synthesis report. Intergovernmental Panel on Climate Change.
  13. IPCC. (2018). Global warming of 1.5°C. Intergovernmental Panel on Climate Change.
  14. ISPBE. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat.
  15. Karl, T.R., Arguez, A., Huang, B. Lawrimore, J.H., McMahon, J.R., Menne, M.J., Peterson, T.C., Vose, R.S., & Zhang, H.M. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348(6242), 1469-1472. DOI:
  16. Kendall, M.G. (1975), Rank correlation methods. Charles Griffin and Co. Ltd.
  17. Kisi, O., & Ay, M. (2014). Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362-375. DOI:
  18. Lenderink, G., Mok, H.Y., Lee, T.C., & van Oldenborgh, G.J. (2011). Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands. Hydrology and Earth Systems Sciences, 15(9), 3033-3041. DOI:
  19. Malhi, G., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability, 13(3), 1318. DOI:
  20. Mall, R.K., Bhatia, R., & Pandey, S.N. (2007). Water resources in India and impact of climate change. Jalvigyan Sameeksha, 22, 157-176.
  21. Mann, H.B. (1945). Non-parametric tests against trend. Econometrica, 13(3), 245-259. DOI:
  22. Mirza, M.M.Q. (2002). Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Global Environmental Change, 12(2), 127-138. DOI:
  23. Molnar, P., Fatichi, S., Gaál, L., Szolgay, J., & Burlando, P. 2015. Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature, Hydrology and Earth System Sciences, 19,1753-1766. DOI:
  24. Nalley, D., Adamowski, J., Khalil, B., & Ozga-Zielinski, B. (2013). Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transforms. Atmospheric Research, 132-133, 375-398. DOI:
  25. Pielke, R.A. Sr., Adegoke, J., Beltran-Przekurat, A., Hiemstra, C.A., Lin, J., Nair, U.S., Niyogi, D., & Nobis, T.E. (2007). An overview of regional land use and landcover impacts on rainfall. Tellus B: Chemical and Physical Meteorology, 59(3), 587-601. DOI:
  26. Pingale, S., Khare, D., Jat, M.K., & Adamowksi, J.F. (2016). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73-90. DOI:
  27. Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J.T., Washington, W.M., Fu, O., Sikka, D.R., & Wild, M. (2005). Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5326-5333. DOI:
  28. Ramanathan, V., Crutzen, P.J., Kiehl, J.T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrologic cycle. Science, 294, 5549. DOI:
  29. Ramankutty, N., Delire, C., & Snyder, P. (2006). Feedbacks between agriculture and climate: an illustration of the potential unintended consequences of human land use activities. Global and Planetary Change, 54(1-2), 79-93. DOI:
  30. Raucher, R.S. (2011). The future of research on climate change impacts on water. A workshop focusing on adaptation strategies and information needs, Water Research Foundation, Denver.
  31. Ray, D.K., Nair, U.S., Lawton, R.O., Welch, R.M., & Pielke Sr., R.A. (2006). Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of orographic cloud formation to deforestation in the plains. Journal of Geophysical Research, 111, D02108. DOI:
  32. Ray, D.K., Nair, U.S., Welch, R.M., Han, Q., Su, W., Kikuchi, T., & Lyons, T.J. (2003). Effects of land use in Southwest Australia: 1. observations of cumulus cloudiness and energy fluxes. Journal of Geophysical Research, 108(D14), 4414. DOI:
  33. Roy, A.D. (2015). Trend detection in temperature and rainfall over Rajasthan during last century. Asian Journal of Research in Social Sciences and Humanities, 5(2), 12-26. DOI:
  34. Sarkar, S., & Kafatos, M. (2004). Interannual variability of vegetation over the Indian sub-continent and its relation to the different meteorological parameters. Remote Sensing of Environment, 90(2), 268-280. DOI:
  35. Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379-1389. DOI:
  36. Sharma, S.K., Sharma, D.P., Sharma, M.K., Gaur, K., & Manohar, P. (2021). Trend analysis of temperature and rainfall of Rajasthan, India. Journal of Probability and Statistics, 2021, 6296709. DOI:
  37. Singh, P., Kumar, V., Thomas, T., & Arora, M. (2008). Basin-wide assessment of temperature trends in northwest and central India. Hydrological Sciences Journal, 53(2), 421-433. DOI:
  38. Sinha Ray, K.C., & Srivastava, A.K. (2000). Is there any change in extreme events like droughts and heavy rainfall. Current Science. 79(2), 155-158.
  39. Utsumi, N., Seto, S., Kanae, S., Maeda, E.E., & Oki, T. (2011). Does higher surface temperature intensify extreme precipitation? Geophysical Research Letters, 38(16), L16708. DOI:
  40. Yue, S., & Hashino, M. (2003). Long term trends of annual and monthly precipitation in Japan. Journal of the American Water Resources Association, 39(3), 587-596. DOI:
  41. Yue, S., Pilon, P., & Phinney, B. (2003). Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrological Sciences Journal, 48(1), 51-63. DOI: