Main Article Content

Abstract

Generally, antimicrobial peptides (AMPs) are considered as an important part of innate immunity, due to which they provide the first line of defence against various pathogens. Additionally, they also kill pathogens that show resistance towards many antibiotics. Fishes are regularly challenged by various pathogens which not only affect their health but the risk of becoming resistant to conventional antibiotics is also increasing. As fishes shows more dependence on innate immunity, AMPs can aid as important defensive weapon in fishes. In general, AMPs exhibit various multidimensional characteristics such as neutralization of pathogens (viral, fungal & bacterial), rapidly diffuse to the infection site, and other immune cells recruitment to the infected tissues. AMPs also show various biological effects such as immunomodulation, neutralization of endotoxin and angiogenesis induction. There are numerous AMPs that have been isolated from fishes but not fully characterized at molecular level. In this review we basically focus on approaches used to design new AMP, machine learning approach, current objectives of AMPs and future prospects.

Keywords

Antimicrobial resistance Antitumor activity Biofilm CRISPR-Cas Host defence vaccine

Article Details

How to Cite
Panwar, S., Semwal, P., Thapliyal, M., Thapliyal, A., Yaro, C. A., & Batiha, G. E.-S. (2023). Fish antimicrobial peptides: at a glance. Environment Conservation Journal, 24(2), 387–407. https://doi.org/10.36953/ECJ.24542305

References

  1. Ageitos, J. M., Sanchez-Perez, A., Calo-Mata, P., & Villa, T. G. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138. DOI: https://doi.org/10.1016/j.bcp.2016.09.018
  2. Andersson, E., Rydengård, V., Sonesson, A., Mörgelin, M., Björck, & Schmidtchen, A. (2004). Antimicrobial activities of heparin- binding peptides. European Journal of Biochemistry, 271, 1219–1226. DOI: https://doi.org/10.1111/j.1432-1033.2004.04035.x
  3. Bahar, A., & Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals, 6, 1543–1575. DOI: https://doi.org/10.3390/ph6121543
  4. Bednarska, N. G., Wren, B. W., & Willcocks, S. J. (2017). The importance of the glycosylation of antimicrobial peptides: Natural and synthetic approaches. Drug Discovery Today, 22, 919–926. DOI: https://doi.org/10.1016/j.drudis.2017.02.001
  5. Beutler, B. (2000). Endotoxin, Toll-like receptor 4, and the afferent limb of innate immunity. Current Opinion in Microbiology, 3, 23–28. DOI: https://doi.org/10.1016/S1369-5274(99)00046-6
  6. Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3, 238–250. DOI: https://doi.org/10.1038/nrmicro1098
  7. Brötz, H., Bierbaum, G., Reynolds, P. E., & Sahl, H. G. (1997). The Lantibiotic Mersacidin Inhibits Peptidoglycan Biosynthesis at the Level of Transglycosylation. European Journal of Biochemistry, 246, 193–199. DOI: https://doi.org/10.1111/j.1432-1033.1997.t01-1-00193.x
  8. Browne, M. J., Feng, C. Y., Booth, V., & Rise, M. L. (2011). Characterization and expression studies of Gaduscidin-1 and Gaduscidin-2; paralogous antimicrobial peptide-like transcripts from Atlantic cod (Gadus morhua). Developmental & Comparative Immunology, 35, 399–408. DOI: https://doi.org/10.1016/j.dci.2010.11.010
  9. Brumfitt, W., Salton, M. R., Hamilton-Miller, J. M. (2002). Nisin, alone and combined with peptidoglycan-modulating antibiotics: Activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. Journal of Antimicrobial Chemotherapy, 50, 731–734. DOI: https://doi.org/10.1093/jac/dkf190
  10. Casadei, E., Bird, S., Vecino, J. L., Wadsworth, S., & Secombes, C. J. (2013). The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 34, 529–537. DOI: https://doi.org/10.1016/j.fsi.2012.11.027
  11. Chakchouk-Mtibaa, A., Elleuch, L., Smaoui, S., Najah, S., Sellem, I., Abdelkafi, S., & Mellouli, L. (2014). An antilisterial bacteriocin BacFL31 produced by Enterococcus faecium FL31 with a novel structure containing hydroxyproline residues. Anaerobe, 27, 1–6. DOI: https://doi.org/10.1016/j.anaerobe.2014.02.002
  12. Chaturvedi, P., Bhat, R. A. H., & Pande, A. (2018). Antimicrobial peptides of fish: innocuous alternatives to antibiotics. Reviews in aquaculture, 12, 1-22. DOI: https://doi.org/10.1111/raq.12306
  13. Chen, J., Shi, Y. H., Li, M. Y. (2008). Changes in transferrin and hepcidin genes expression in the liver of the fish Pseudosciaena crocea following exposure to cadmium. Archives of Toxicology, 82, 525. DOI: https://doi.org/10.1007/s00204-008-0297-7
  14. Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E., Vasil, M. L., & Hodges, R. S. (2005). Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. Journal of Biological Chemistry, 280, 12316–12329. DOI: https://doi.org/10.1074/jbc.M413406200
  15. Cheung, R. C. F., Ng, T. B., & Wong, J. H. (2015). Marine peptides: bioactivities and applications. Marine Drugs, 13, 4006–4043. DOI: https://doi.org/10.3390/md13074006
  16. Chia, T. J., Wu, Y. C., Chen, J. Y., & Chi, S. C. (2010). Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish & Shellfish Immunology, 28, 434–39. DOI: https://doi.org/10.1016/j.fsi.2009.11.020
  17. Chiesa, G., Busnelli, M., Manzini, S., & Parolini, C. (2016). Nutraceuticals and bioactive components from fish for dyslipidemia and cardiovascular risk reduction. Marine Drugs, 14, 113. DOI: https://doi.org/10.3390/md14060113
  18. Chiou, P. P., Khoo, J., Bols, N.C., Douglas, S., & Chen, T. T. (2006). Effects of linear cationic alpha-helical antimicrobial peptides on immune-relevant genes in trout macrophages. Developmental & Comparative Immunology, 30, 797–806. DOI: https://doi.org/10.1016/j.dci.2005.10.011
  19. Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 32, 1141–1145. DOI: https://doi.org/10.1038/nbt.3011
  20. Costa, F., Carvalho, I. F., Montelaro, R. C., Gomes, P., & Martins, M. C. (2011). Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia, 7, 1431–1440. DOI: https://doi.org/10.1016/j.actbio.2010.11.005
  21. Deslouches, B., & Di, Y. P. (2017). Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget, 8, 46635–46651. DOI: https://doi.org/10.18632/oncotarget.16743
  22. Destoumieux, D., Bulet, P., Loew, D., Van Dorsselaer, A., Rodriguez, J., & Bachère, E. (1997). Penaeidins, a New Family of Antimicrobial Peptides Isolated from the Shrimp Penaeus vannamei (Decapoda). Journal of Biological Chemistry, 272, 28398–28406. DOI: https://doi.org/10.1074/jbc.272.45.28398
  23. Dolis, D., Moreau, C., Zachowski, A., & Devaux, P. F. (1997). Amino phospholipid translocase and proteins involved in transmembrane phospholipid traffic. Biophysical Chemistry, 68, 221–231. DOI: https://doi.org/10.1016/S0301-4622(97)00048-3
  24. Dunne, W. M., Mason, E. O., & Kaplan, S. L. (1993). Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrobial Agents and Chemotherapy, 37, 2522–2526. DOI: https://doi.org/10.1128/AAC.37.12.2522
  25. Edwards, I. A., Elliott, A. G., Kavanagh, A. M., Zuegg, J., Blaskovich, M. A. T., & Cooper, M. A. (2016). Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides. ACS Infectious Diseases, 2, 442–450. DOI: https://doi.org/10.1021/acsinfecdis.6b00045
  26. Falco, A., Chico, V., Marroqui, L., Perez, L., Coll, J. M., & Estepa, A. (2008). Expression and antiviral activity of a beta defensin like peptide identified in the rainbow trout (Onchorhyncus mykiss) EST sequences. Molecular Immunology, 45, 757–765. DOI: https://doi.org/10.1016/j.molimm.2007.06.358
  27. Finking, R., & Marahiel, M. A. (2004). Biosynthesis of Nonribosomal Peptides. Annual Review of Microbiology, 58, 453–488. DOI: https://doi.org/10.1146/annurev.micro.58.030603.123615
  28. Fjell, C. D., Hancock, R. E. W., & Cherkasov, A. (2013). AMPer: a database and an automated discovery tool for antimicrobial peptides. Bioinformatics, 23, 1148-55. DOI: https://doi.org/10.1093/bioinformatics/btm068
  29. Fraenkel, P. G., Gibert, Y., Holzheimer, J. L., Lattanzi, V. J., Burnett, S. F., & Dooley, K. A. (2009). Transferrin-a modulates hepcidin expression in zebrafish embryos. Blood, The Journal of the American Society of Hematology, 113, 2843–2850. DOI: https://doi.org/10.1182/blood-2008-06-165340
  30. Friedrich, C., Scott, M. G., Karunaratne, N., Yan, H., & Hancock, R. E. (1999). Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 43, 1542–1548. DOI: https://doi.org/10.1128/AAC.43.7.1542
  31. Friedrich, C. L., Rozek, A., Patrzykat, A., & Hancock, R. W. E. (2001). Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram positive bacteria. Journal of Biological Chemistry, 276, 24015– 24022. DOI: https://doi.org/10.1074/jbc.M009691200
  32. Gao, G., Lange, D., Hilpert, K., Kindrachuk, J., Zou, Y., Cheng, J. T., Kazemzadeh-Narbat, M., Yu, K., Wang, R., & Straus, S. K. (2011). The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 32, 3899–3909. DOI: https://doi.org/10.1016/j.biomaterials.2011.02.013
  33. Giuliani, A., Pirri, G., & Nicoletto, S. F. (2007). Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology, 2, 1–33. https://doi.org/10.2478/ s11535-007-0010-5. DOI: https://doi.org/10.2478/s11535-007-0010-5
  34. Giuliani, A., Rinaldi, A. C., Totowa, N. J. (2010). In Antimicrobial Peptides. (eds.) Humana Press: Methods in Molecular Biology, USA 618. DOI: https://doi.org/10.1007/978-1-60761-594-1
  35. Greene, A. C. (2017). CRISPR-based antibacterials: transforming bacterial defence into offense. Trends in Biotechnology, 36, 127–130. DOI: https://doi.org/10.1016/j.tibtech.2017.10.021
  36. Goumon, Y., Strub, J. M., Moniatte, M., Nullans, G., Poteur, L., Hubert, P., Van Dorsselaer, A., Aunis, D., & Metz-Boutigue, M. H. (1996). The c-terminal bis-phosphorylated proenkephalina-(209–237)- peptide from adrenal medullary chromaffin granules possesses antibacterial activity. European Journal of Biochemistry, 235, 516–525. DOI: https://doi.org/10.1111/j.1432-1033.1996.t01-1-00516.x
  37. Gunn, J. S. (2001). Bacterial modification of LPS and resistance to antimicrobial peptides. Journal of Endotoxin Research, 7, 57–62. DOI: https://doi.org/10.1177/09680519010070011001
  38. Guo, L., Lim, K. B., Poduje, C. M., Daniel, M., Gunn, J. S., Hackett, M., & Miller, S. I. (1998). Lipid acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell, 95, 189–198. DOI: https://doi.org/10.1016/S0092-8674(00)81750-X
  39. Gupta, S. M., Aranha, C. C., Bellare, J. R., & Reddy, K. V. R. (2009). Interaction of contraceptive antimicrobial peptide nisin with target cell membranes: implications for use as vaginal microbicide. Contraception, 80, 299–307. DOI: https://doi.org/10.1016/j.contraception.2009.03.012
  40. Gupta, R. M., & Musunuru, K. (2014). Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. The Journal of Clinical Investigation, 124, 4154–4161. DOI: https://doi.org/10.1172/JCI72992
  41. Hallock, K. J., Lee, D. K., & Ramamoorthy, A. (2003). MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophysical Journal, 84, 3052–3060. DOI: https://doi.org/10.1016/S0006-3495(03)70031-9
  42. Han, S. J., Choi, K. Y., Brey, P. T., & Lee, W. J. (1998). Molecular cloning and characterization of a Drosophila p38 mitogen- activated protein kinase. Journal of Biological Chemistry, 273, 369–374. DOI: https://doi.org/10.1074/jbc.273.1.369
  43. Han, Z. S., Enslen, H., Hu, X., Meng, X., Wu, I. H., Barrett, T., Davis, R. J., & Ip, Y. T. (1998). A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Molecular and Cellular Biology, 18, 3527–3539. DOI: https://doi.org/10.1128/MCB.18.6.3527
  44. Hancock, R. E. (1997). Peptide antibiotics. Lancet, 349, 418. DOI: https://doi.org/10.1016/S0140-6736(97)80051-7
  45. Hancock, R. E., & Scott, M. G. (2000). The role of antimicrobial peptides in animal defences. Proceedings of the National Academy of Sciences, 97, 8856–8861. DOI: https://doi.org/10.1073/pnas.97.16.8856
  46. Hancock, R. E. W., & Chapple, D. L. (1999). Peptides antibiotics. Antimicrobial Agents and Chemotherapy, 43, 1317–1323. DOI: https://doi.org/10.1128/AAC.43.6.1317
  47. Hancock, R. E. W., & Sahl, H. G. (2006). Antimicrobial and host-defence peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24, 1551–1557. DOI: https://doi.org/10.1038/nbt1267
  48. Harro, J. M., Peters, B. M., O’May, G. A., Archer, N., Kerns, P., Prabhakara, R., & Shirtliff, M. E. (2010). Vaccine development in Staphylococcus aureus: Taking the biofilm phenotype into consideration. FEMS Immunology and Medical Microbiology, 59, 306–323. DOI: https://doi.org/10.1111/j.1574-695X.2010.00708.x
  49. Hata, T. R., & Gallo, R. L. (2008). Antimicrobial peptides, skin infections, and atopic dermatitis. Seminars in Cutaneous Medicine and Surgery, 27, 144–150. DOI: https://doi.org/10.1016/j.sder.2008.04.002
  50. He, K., Ludtke, S. J., Worcester, D. L., & Huang, H. W. (1996). Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophysical Journal, 70, 2659–2666. DOI: https://doi.org/10.1016/S0006-3495(96)79835-1
  51. Henriques, S. T., Melo, M. N., & Castanho, M. A. R. B. (2006). Cell penetrating peptides and antimicrobial peptides: how different are they? Biochemical Journal, 399, 1–7. DOI: https://doi.org/10.1042/BJ20061100
  52. Henzler, K. A., Wildman, Lee, D. K., & Ramamoorthy, A. (2003). Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 42, 6545– 6558. DOI: https://doi.org/10.1021/bi0273563
  53. Horne, W. S., Wiethoff, C. M., Cui, C., Wilcoxen, K. M., Amorin, M., Ghadiri, M. R., & Nemerow, G. R. (2005). Antiviral cyclic D, L-α-peptides: Targeting a general biochemical pathway in virus infections. Bioorganic & Medicinal Chemistry, 13, 5145–5153. DOI: https://doi.org/10.1016/j.bmc.2005.05.051
  54. Hou, F., Li, J., Pan, P., Xu, J., Liu, L., Liu, W., Song, B., Li, N., Wan, J., & Gao, H. (2011). Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis. International Journal of Antimicrobial Agents, 38, 510–515. DOI: https://doi.org/10.1016/j.ijantimicag.2011.07.012
  55. Huang, Y. B., Huang, J. F., & Chen, Y. X. (2010). Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell, 1, 143–152. DOI: https://doi.org/10.1007/s13238-010-0004-3
  56. Hwang, B., Hwang, J. S., & Lee, J. (2011). Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochemical and Biophysical Research Communications, 408, 89– 93. DOI: https://doi.org/10.1016/j.bbrc.2011.03.125
  57. Imler, J., & Hoffmann, J. (2000). Signalling mechanisms in the antimicrobial host defence of Drosophila. Current Opinion in Microbiology, 3, 16–22. DOI: https://doi.org/10.1016/S1369-5274(99)00045-4
  58. Järver, P., & Langel, Ü. (2006). Cell-penetrating peptides—a brief introduction. Biochimica et Biophysica Acta, 1758, 260–263. DOI: https://doi.org/10.1016/j.bbamem.2006.02.012
  59. Jenssen, H., Andersen, J. H., Uhlin-Hansen, L., Gutteberg, T. J., & Rekdal, O. (2004). Anti-hsv activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate. Antiviral Research, 61, 101–109. DOI: https://doi.org/10.1016/j.antiviral.2003.09.001
  60. Jenssen, H., Hamill, P., & Hancock, R. W. E. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19, 491–511. DOI: https://doi.org/10.1128/CMR.00056-05
  61. Joseph, S., Karnik, S., Nilawe, P., Jayaraman, V. K., & Idicula-Thomas, S. (2012). ClassAMP: a prediction tool for classification of antimicrobial peptides. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9, 1535-1538. DOI: https://doi.org/10.1109/TCBB.2012.89
  62. Kang, D., Liu, G., Lundström, A., Gelius, E., & Steiner, H. (1998). A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proceedings of the National Academy of Sciences, 95, 10078–10082. DOI: https://doi.org/10.1073/pnas.95.17.10078
  63. Kamatani, Y., Minakata, H., Nomoto, K., Kim, K. H., Yongsiri, A., & Takeuchi, H. (1991). Isolation of achatin-I, a neuroactive tetrapeptide having a D-phenylalanine residue, from Achatina ganglia, and its effects on Achatina giant neurones. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 98, 97–103. DOI: https://doi.org/10.1016/0742-8413(91)90186-W
  64. Katzenback, B. A. (2015). Antimicrobial peptides as mediators of innate immunity in teleosts. Biology, 4, 607–639. DOI: https://doi.org/10.3390/biology4040607
  65. Kavanagh, K., & Dowd, S. (2004). Histatins: antimicrobial peptides with therapeutic potential. Journal of Pharmacy and Pharmacology, 56, 285–289. DOI: https://doi.org/10.1211/0022357022971
  66. Kindrachuk, J., & Napper, S. (2010). Structure-activity relationships of multifunctional host defence peptides. Mini Reviews in Medicinal Chemistry, 10, 596–614. DOI: https://doi.org/10.2174/138955710791383983
  67. Kirby, A. J. (2001). The lysozyme mechanism sorted—After 50 years. Nature Structural Biology, 8, 737–739. DOI: https://doi.org/10.1038/nsb0901-737
  68. Kondejewski, L. H., Jelokhani-Niaraki, M., & Farmer, S. W. (1999). Dissociation of antimicrobial and haemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. Journal of Biological Chemistry, 274, 13181– 13192. DOI: https://doi.org/10.1074/jbc.274.19.13181
  69. Kovacs-Nolan, J., Mapletoft, J. W., Latimer, L., Babiuk, L. A., & Hurk, S. D. (2009). CpG oligonucleotide, host defense peptide and polyphosphazene act synergistically, inducing long-lasting, balanced immune responses in cattle. Vaccine, 27, 2048–54. DOI: https://doi.org/10.1016/j.vaccine.2009.01.117
  70. Kragol, G., Lovas, S., Varadi, G., Condie, B. A., Hoffmann, R., & Otvos, L. (2001). The Antibacterial Peptide Pyrrhocoricin Inhibits the ATPase Actions of DnaK and Prevents Chaperone-Assisted Protein Folding. Biochemistry, 40, 3016–3026. DOI: https://doi.org/10.1021/bi002656a
  71. Kreil, G. (1997). D-amino acids in animal peptides. Annual Review of Biochemistry, 66, 337–345. DOI: https://doi.org/10.1146/annurev.biochem.66.1.337
  72. Lai, Y., & Gallo, R. L. (2009). AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends in Immunology, 30, 131–141. DOI: https://doi.org/10.1016/j.it.2008.12.003
  73. Laquerre, S., Argnani, R., Anderson, D. B., Zucchini, S., Manservigi, R., & Glorioso, J. C. (1998). Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins b and c, which differ in their contributions to virus attachment, penetration, and cell-tocell spread. Journal of Virology, 72, 6119–6130. DOI: https://doi.org/10.1128/JVI.72.7.6119-6130.1998
  74. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., & Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973–983. DOI: https://doi.org/10.1016/S0092-8674(00)80172-5
  75. Lemaitre, B., Kromer-Metzger, E., Michaut, L., Nicolas, E., Meister, M., Georgel, P., Reichhart, J. M., & Hoffmann, J. A. (1995). A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proceedings of the National Academy of Sciences, 92, 9365–9469. DOI: https://doi.org/10.1073/pnas.92.21.9465
  76. Lemaitre, B., Reichhart, J. M., & Hoffmann, J. A. (1997). Drosophila host defence: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proceedings of the National Academy of Sciences, 94, 14614–14619. DOI: https://doi.org/10.1073/pnas.94.26.14614
  77. Levashina, E. A., Ohresser, S., Lemaitre, B., & Imler, J. L. (1998). Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. Journal of Molecular Biology, 278, 515–527. DOI: https://doi.org/10.1006/jmbi.1998.1705
  78. Lewies, A., Wentzel, J. F., Jacobs, G., Du Plessis, L. H. (2015). The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases. Molecules, 20, 15392–15433. DOI: https://doi.org/10.3390/molecules200815392
  79. Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45, 999–1007. DOI: https://doi.org/10.1128/AAC.45.4.999-1007.2001
  80. Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372. DOI: https://doi.org/10.1146/annurev.micro.112408.134306
  81. Lewis, L. A., Choudhury, B., Balthazar, J. T., Martin, L. E., Ram, S., Rice, P. A., Stephens, D. S., Carlson, R., & Shafer, W. M. (2009). Phosphoethanolamine substitution of lipid and resistance of Neisseria gonorrhea to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infection and Immunity, 77, 1112–1120. DOI: https://doi.org/10.1128/IAI.01280-08
  82. Lin, Y., Cai, Y., Liu, J., Lin, C., & Liu, X. (2019). An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning atrategies. BMC Bioinformatics, 20, 291 DOI: https://doi.org/10.1186/s12859-019-2766-9
  83. Lira, F., Perez, P. S., Baranauskas, J. A., & Nozawa, S. R. (2013). Prediction of antimicrobial activity of synthetic peptides by a decision tree model. Applied and environmental microbiology, 79, 3156-3159. DOI: https://doi.org/10.1128/AEM.02804-12
  84. Lohner, K., & Prenner, E. J. (1999). Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane- mimetic systems. Biochimica et Biophysica Acta, 1462, 141–156. DOI: https://doi.org/10.1016/S0005-2736(99)00204-7
  85. López Cascales, J. J., Zenak, S., García de la Torre, J., Lezama, O. G., Garro, A., & Enriz, R. D. (2018). Small Cationic Peptides: Influence of Charge on Their Antimicrobial Activity. ACS Omega, 3, 5390–5398. DOI: https://doi.org/10.1021/acsomega.8b00293
  86. Madani, F., Lindberg, S., Langel, U., Futaki, S., & Gräslund, A. (2011). Mechanisms of cellular uptake of cell-penetrating peptides. Journal of Biophysics, 414729. DOI: https://doi.org/10.1155/2011/414729
  87. Magnadottir, B. (2010). Immunological control of fish diseases. Marine Biotechnology, 12, 361–79. DOI: https://doi.org/10.1007/s10126-010-9279-x
  88. Mah, T. F., & O’Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9, 34–39. DOI: https://doi.org/10.1016/S0966-842X(00)01913-2
  89. Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Frontiers in Cellular and Infection Microbiology, 6, 194. DOI: https://doi.org/10.3389/fcimb.2016.00194
  90. Mangoni, M. E., Aumelas, A., Charnet, P., Roumestand, C., Chiche, L., Despaux, E., Grassy, G., Calas, B., & Chavanieu, A. (1996). Change in membrane permeability induced by protegrin 1: Implication of disulphide bridges for pore formation. FEBS Letters, 383, 93–98. DOI: https://doi.org/10.1016/0014-5793(96)00236-0
  91. Matsuzaki, K., Sugishita, K. I., Harada, M., Fujii, N., & Miyajima, K. (1997). Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram negative bacteria. Biochimica et Biophysica Acta, 1327, 119–130. DOI: https://doi.org/10.1016/S0005-2736(97)00051-5
  92. Medzhitov, R., & Janeway, C. A. (1997). Jr Innate immunity: the virtues of a non-clonal system of recognition. Cell, 91, 295–298. DOI: https://doi.org/10.1016/S0092-8674(00)80412-2
  93. Meher, P. K., Sahu, T. K., Saini, V., & Rao, A. R. (2017). Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Scientific reports, 7, 1-12. DOI: https://doi.org/10.1038/srep42362
  94. Mohanty, D., Jena, R., Choudhury, P. K., Pattnaik, R., Mohapatra, S., & Saini, M. R. (2016). Milk derived antimicrobial bioactive peptides: a review. International Journal of Food Properties, 19, 837–846. DOI: https://doi.org/10.1080/10942912.2015.1048356
  95. Niggemann, J., Bozko, P., Bruns, N., Wodtke, A., Gieseler, M. T., Thomas, K., Jahns, C., Nimtz, M., Reupke, I., & Brüser, T. (2014). Baceridin, a cyclic hexapeptide from an epiphytic Bacillus strain, inhibits the proteasome. Chembiochem, 15, 1021–1029. DOI: https://doi.org/10.1002/cbic.201300778
  96. Noga, E. J., Ullal, A. J., Corrales, J., & Fernandes, J. M. (2010). Application of antimicrobial polypeptide host defences to aquaculture: exploitation of downregulation and upregulation responses. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 6, 44-54. doi: 10.1016/j.cbd.2010.06.001.
  97. Noga, E. J., Ullal, A. J., Corrales, J., & Fernandes, J. M. O. (2011b). Application of antimicrobial polypeptide host defences to aquaculture: exploitation of downregulation and upregulation responses. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 6, 44–54. DOI: https://doi.org/10.1016/j.cbd.2010.06.001
  98. Novkovic, M., Simunic, J., Bojovic, V., Tossi, A., & Juretic, D. (2012). DADP: The database of anuran defense peptides. Bioinformatics, 28, 1406–1407. DOI: https://doi.org/10.1093/bioinformatics/bts141
  99. Oman, T. J., Boettcher, J. M., Wang, H., Okalibe, X. N., & Van der Donk, W. A. (2011). Sublancin is not a lantibiotic but an s-linked glycopeptide. Nature Chemical Biology, 7, 78–80. DOI: https://doi.org/10.1038/nchembio.509
  100. Oren, Z., & Shai, Y. (1998). Mode of action of linear amphipathic - helical antimicrobial peptides. Biopolymers, 47, 451–463. DOI: https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
  101. Otto, M. (2006). Bacterial evasion of antimicrobial peptides by biofilm formation. Current Topics in Microbiology and Immunology, 306, 251–258. DOI: https://doi.org/10.1007/3-540-29916-5_10
  102. Pan, C. Y., Tsai, T. Y., Su, B. C., Hui, C. F., & Chen, J. Y. (2017). Study of the antimicrobial activity of tilapia piscidin 3 (TP3) and TP4 and their effects on immune functions in hybrid tilapia (Oreochromis spp.). PLOS ONE, 12, e0169678. DOI: https://doi.org/10.1371/journal.pone.0169678
  103. Papagianni, M. (2003). Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnology Advances, 21, 465– 499. DOI: https://doi.org/10.1016/S0734-9750(03)00077-6
  104. Park, C., & Lee, D. G. (2010). Melittin induces apoptotic features in Candida albicans. Biochemical and Biophysical Research Communications, 394, 170–172. DOI: https://doi.org/10.1016/j.bbrc.2010.02.138
  105. Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S., & Kim, S. C. (2000). Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proceedings of the National Academy of Sciences of the United States of America, 97, 8245–8250. DOI: https://doi.org/10.1073/pnas.150518097
  106. Park, C. B., Kim, H. S., & Kim, S. C. (1998). Mechanism of Action of the Antimicrobial Peptide Buforin II: Buforin II Kills Microorganisms by Penetrating the Cell Membrane and Inhibiting Cellular Functions. Biochemical and Biophysical Research Communication, 244, 253–257. DOI: https://doi.org/10.1006/bbrc.1998.8159
  107. Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V., & Hancock, R. W. E. (2002). Sub lethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrobial Agents and Chemotherapy, 46, 605–614. DOI: https://doi.org/10.1128/AAC.46.3.605-614.2002
  108. Patrzykat, A., Gallant, J. W., Seo, J. K., Pytyck, J., & Douglas, S. E. (2003). Novel Antimicrobial Peptides Derived from Flatfish Genes. Antimicrobial Agents and Chemotherapy, 47, 2464–2470. DOI: https://doi.org/10.1128/AAC.47.8.2464-2470.2003
  109. Phoenix, D., Dennison, S. R., & Harris, F. (2013). Antimicrobial Peptides. Wiley-VCH: Weinheim, Germany, p 231. DOI: https://doi.org/10.1002/9783527652853
  110. Powers, J. P., & Hancock, R. E. (2003). The relationship between peptide structure and antibacterial activity. Peptides, 24, 1681–1691. DOI: https://doi.org/10.1016/j.peptides.2003.08.023
  111. Pursey, E., S€u Nderhauf, D., Gaze, W. H., Westra, E. R., & Van Houte, S. (2018). CRISPR-Cas antimicrobials: challenges and future prospects. PLOS Pathogens, 14, 1–8. DOI: https://doi.org/10.1371/journal.ppat.1006990
  112. Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Antimicrobial peptides: versatile biological properties. International journal of peptides, Volume 2013, Article ID 675391, 15 pages. DOI: https://doi.org/10.1155/2013/675391
  113. Pushpanathan, M., Rajendhran, J., Jayashree, S., Sundarakrishnan, B., Jayachandran, S., & Gunasekaran, P. (2012). Identification of a novel antifungal peptide with chitin-binding property from marine metagenome. Protein and Peptide Letters, 19, 1289–1296. DOI: https://doi.org/10.2174/092986612803521620
  114. Rammelkamp, C. H., & Weinstein, L. (1942). Toxic effects of tyrothricin, gramicidin and tyrocidine. The Journal of Infectious Diseases, 71, 166–173. DOI: https://doi.org/10.1093/infdis/71.2.166
  115. Ramos, R., Moreira, S., Rodrigues, A., Gama, M., & Domingues, L. (2013). Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnology Progress, 29, 17–22. DOI: https://doi.org/10.1002/btpr.1650
  116. Rana, M., Chatterjee, S., Kochhar, S., & Pereira, B. M. J. (2006). Antimicrobial peptides: a new dawn for regulating fertility and reproductive tract infections. Journal of Endocrinology and Reproduction, 10, 88–95.
  117. Rautenbach, M., Troskie, A. M., & Vosloo, J. A. (2016). Antifungal peptides: To be or not to be membrane active. Biochimie, 130, 132–145. DOI: https://doi.org/10.1016/j.biochi.2016.05.013
  118. Rifflet, A., Gavalda, S., Tene, N., Orivel, J., Leprince, J., Guilhaudis, L., Genin, E., Vetillard, A., & Treilhou, M. (2012). Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides, 38, 363–370. DOI: https://doi.org/10.1016/j.peptides.2012.08.018
  119. Rončević, T., Gajski, G., Ilić, N., Goić-Barišić, I., Tonkić, M., Zoranić, L., Simunić, J., Benincasa, M., Mijaković, M., & Tossi, A. (2017). PGLa-H tandem-repeat peptides active against multidrug resistant clinical bacterial isolates. Biochimica et Biophysica Acta, 1859, 228–237. DOI: https://doi.org/10.1016/j.bbamem.2016.11.011
  120. Rončević, T., Puizina, J., & Tossi, A. (2019). Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? International journal of Molecular Sciences, 20, 5713 DOI: https://doi.org/10.3390/ijms20225713
  121. Rutschmann, S., Jung, A. C., Hetru, C., Reichhart, J. M., Hoffmann, J. A., & Ferrandon, D. (2000). The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity, 12, 569–580. DOI: https://doi.org/10.1016/S1074-7613(00)80208-3
  122. Sang, M., Zhang, J., & Zhuge, Q. (2017). Selective cytotoxicity of the antibacterial peptide ABP-dHC-Cecropin A and its analog toward leukemia cells. European Journal of Pharmacology, 803, 138–147. DOI: https://doi.org/10.1016/j.ejphar.2017.03.054
  123. Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agent, 52, 135–143. DOI: https://doi.org/10.1016/j.ijantimicag.2018.03.010
  124. Sengupta, D., Leontiadou, H., Mark, A. E., & Marrink, S. J. (2008). Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica et Biophysica Acta, 1778, 2308–2317. DOI: https://doi.org/10.1016/j.bbamem.2008.06.007
  125. Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., & Lee, B. J. (2012). Antimicrobial peptides for therapeutic applications: a review. Molecules, 17, 12276–12286. https://doi.org/10.3390/molecule s171012276. DOI: https://doi.org/10.3390/molecules171012276
  126. Shabir, U., Ali, S., Magray, A. R., Ganai, B. A., Firdous, P., & Hassan, T. (2018). Microbial pathogenesis fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. Microbial Pathogenesis, 114, 50–56. DOI: https://doi.org/10.1016/j.micpath.2017.11.039
  127. Shewring, D. M., Zou, J., Corripio-Miyar, Y., & Secombes, C. J. (2011). Analysis of the cathelicidin 1 gene locus in Atlantic cod (Gadus morhua). Molecular Immunology, 48, 782–787. DOI: https://doi.org/10.1016/j.molimm.2010.11.006
  128. Shigeta, M., Tanaka, G., Komatsuzawa, H., Sugai, M., Suginaka, H., & Usui, T. (1997). Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: A simple method. Chemotherapy, 43, 340–345. DOI: https://doi.org/10.1159/000239587
  129. Shinnar, A. E., Butler, K. L., Park, H. J. (2003). Cathelicidin family of antimicrobial peptides: Proteolytic processing and protease resistance. Bioorganic Chemistry. 31, 425–436. DOI: https://doi.org/10.1016/S0045-2068(03)00080-4
  130. Sitaram, N., & Nagaraj, R. (1999). Interaction of antimicrobial peptides with biological and model membranes: Structural and charge requirements for activity. Biochimica et Biophysica Acta, 1462, 29–54. DOI: https://doi.org/10.1016/S0005-2736(99)00199-6
  131. Smith, V. J., Desbois, A. P., & Dyrynda, E. A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs, 8, 1213– 1262. DOI: https://doi.org/10.3390/md8041213
  132. Solomon, T. (2008). New vaccines for Japanese encephalitis. The Lancet Neurology, 7, 116–118. DOI: https://doi.org/10.1016/S1474-4422(08)70004-8
  133. Song, B. H., Lee, G. C., Moon, M. S., Cho, Y. H., & Lee, C. H. (2001). Human cytomegalovirus binding to heparan sulfate proteoglycans on the cell surface and/or entry stimulates the expression of human leukocyte antigen class I. Journal of General Virology, 82, 2405– 2413. DOI: https://doi.org/10.1099/0022-1317-82-10-2405
  134. Steinstraesser, L., Kraneburg, U., Jacobsen, F., & Al-Benna, S. (2011). Host defence peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 216, 322–333. DOI: https://doi.org/10.1016/j.imbio.2010.07.003
  135. Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138. DOI: https://doi.org/10.1016/S0140-6736(01)05321-1
  136. Taboureau, O., Giuliani, A., & Rinaldi, A. C. (2010). Methods for Building Quantitative Structure–Activity Relationship (QSAR) Descriptors and Predictive Models for Computer-Aided Design of Antimicrobial Peptides. Antimicrobial Peptides; Eds. Humana Press: Totowa, NJ, USA, 618, 77–86. DOI: https://doi.org/10.1007/978-1-60761-594-1_6
  137. Takeshima, K., Chikushi, A., Lee, K. K., Yonehara, S., & Matsuzaki, K. (2003). Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. Journal of Biological Chemistry, 278, 1310–1315. DOI: https://doi.org/10.1074/jbc.M208762200
  138. Terova, G., Cattaneo, A. G., Preziosa, E., Bernardini, G., & Saroglia, M. (2011). Impact of acute stress on antimicrobial polypeptides mRNA copy number in several tissues of marine sea bass (Dicentrarchus labrax). BMC Immunology, 12, 69. DOI: https://doi.org/10.1186/1471-2172-12-69
  139. Théolier, J., Fliss, I., Jean, J., & Hammami, R. (2014). Antimicrobial peptides of dairy proteins: From fundamental to applications. Food Reviews International, 30, 134–154. DOI: https://doi.org/10.1080/87559129.2014.896017
  140. Théolier, J., Hammami, R., Labelle, P., Fliss, I., & Jean, J. (2013). Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. Journal of Functional Foods, 5, 706–714. DOI: https://doi.org/10.1016/j.jff.2013.01.014
  141. Tossi, A., Sandri, L., & Giangaspero, A. (2000). Amphipathic, alphahelical antimicrobial peptides. Biopolymers, 55, 4–30. DOI: https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  142. Ullal, A. J., & Noga, E. J. (2010). Antiparasitic activity of the antimicrobial peptide HbbP-1, a member of the b-haemoglobin peptide family. Journal of Fish Diseases, 33, 657–664. DOI: https://doi.org/10.1111/j.1365-2761.2010.01172.x
  143. Valero, Y., Chaves-Pozo, E., Meseguer, J., Esteban, M. A., & Cuesta, A. (2013). Biological role of fish antimicrobial peptides. In: Seong MD, Hak YI (eds) Antimicrobial Peptides. Nova Science Publishers, 1, 31–60.
  144. Vasta, G. R., Quesenberry, M., Ahmed, H., & O’Leary, N. (1999). C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Developmental & Comparative Immunology, 23, 401–420. DOI: https://doi.org/10.1016/S0145-305X(99)00020-8
  145. Veltri, D., Kamath, U., & Shehu, A. (2018). Deep learning improves antimicrobial peptide recognition. Bioinformatics, 34, 2740-2747. DOI: https://doi.org/10.1093/bioinformatics/bty179
  146. Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR Models -Strategies and Importance. International Journal of Drug Design & Discovery, 3, 511–519.
  147. Von Heijne, G. (1990). The signal peptide. The Journal of Membrane Biology, 115, 195– 201. DOI: https://doi.org/10.1007/BF01868635
  148. Wade, J. D., Lin, F., Hossain, M. A., Dawson, R. M. (2012). Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor. Amino Acids, 43, 2279–2283. DOI: https://doi.org/10.1007/s00726-012-1305-z
  149. Walsh, C. T., O’Brien, R. V., & Khosla, C. (2013). Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angewandte Chemie International Edition, 52, 7098–7124. DOI: https://doi.org/10.1002/anie.201208344
  150. Wang, P., Hu, L., Liu, G., Jiang, N., Chen, X., Xu, J., & Chou, K. C. (2011). Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PloS one, 6, e18476. DOI: https://doi.org/10.1371/journal.pone.0018476
  151. Wang, Y., Ding, Y., Wen, H., Lin, Y., Hu, Y., Zhang, Y., Xia, Q., & Lin, Z. (2012). QSAR Modelling and Design of Cationic Antimicrobial Peptides Based on Structural Properties of Amino Acids. Combinatorial. Chemistry & High Throughput Screening, 15, 347–353. DOI: https://doi.org/10.2174/138620712799361807
  152. Waghu, F. H., Barai, R. S., Gurung, P., & Idicula-Thomas, S. (2016). CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Research, 44, 1094–1097. DOI: https://doi.org/10.1093/nar/gkv1051
  153. Walkenhorst, W. F., Klein, J. W., Vo, P., & Wimley, W. C. (2013). pH dependence of microbe sterilization by cationic antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 57, 3312–3320. DOI: https://doi.org/10.1128/AAC.00063-13
  154. Weisshoff, H., Hentschel, S., Zaspel, I., Jarling, R., Krause, E., & Pham, T. L. (2014). PPZPMs—a novel group of cyclic lipodepsipeptides produced by the Phytophthora alni associated strain Pseudomonas sp. JX090307—the missing link between the viscosin and amphisin group. Natural Product Communications, 9, 989–996. DOI: https://doi.org/10.1177/1934578X1400900727
  155. Wu Dunn, D., & Spear, P. G. (1989). Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. Journal of Virology, 63, 52–58. DOI: https://doi.org/10.1128/jvi.63.1.52-58.1989
  156. Xiao, X., Wang, P., Lin, W. Z., Jia, J. H., & Chou, K. C. (2013). iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Analytical biochemistry, 436, 168-177. DOI: https://doi.org/10.1016/j.ab.2013.01.019
  157. Yang, L., Harroun, T. A., Weiss, T. M., Ding, L., & Huang, H. W. (2001). Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 81, 1475–1485. DOI: https://doi.org/10.1016/S0006-3495(01)75802-X
  158. Yosef, I., Manor, M., Kiro, R., & Qimron, U. (2015). Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic- resistant bacteria. Proceedings of the National Academy of Sciences, 112, 7267–7672. DOI: https://doi.org/10.1073/pnas.1500107112
  159. Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55, 27–55. DOI: https://doi.org/10.1124/pr.55.1.2
  160. Yeaman, M. R., Bayer, A. S., Koo, S. P., Foss, W., & Sullam, P. M. (1998). Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. The Journal of Clinical Investigation, 101, 178–187. DOI: https://doi.org/10.1172/JCI562
  161. Zairi, A., Tangy, F., Bouassida, K., & Hani, K. (2009), Dermaseptins and magainins: antimicrobial peptides from frogs’ skin—new sources for a promising spermicides microbicides—a mini Review. Journal of Biomedicine and Biotechnology, 2009, 1-8. DOI: https://doi.org/10.1155/2009/452567
  162. Zanetti, M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. Journal of Leukocyte Biology, 75, 39–48. DOI: https://doi.org/10.1189/jlb.0403147
  163. Zhang, L., Rozek, A., & Hancock, R. E. W. (2001). Interaction of cationic antimicrobial peptides with model membranes. Journal of Biological Chemistry, 276, 35714–35722. DOI: https://doi.org/10.1074/jbc.M104925200
  164. Zhang, X., Ogle¸cka, K., & Sandgren, S. (2010). Dual functions of the human antimicrobial peptide LL-37-Target membrane perturbation and host cell cargo delivery. Biochimica et Biophysica Acta, 1798, 2201–2208. DOI: https://doi.org/10.1016/j.bbamem.2009.12.011