Main Article Content

Abstract

The third-most important food legume in terms of economic importance worldwide is the chickpea (Cicer arietinum L.). Its potential production is frequently constrained by numerous biotic stressors, such as the nematodes, insects Ascochyta blight, fusarsium wilt, and botrytis grey mould are the three major fungal diseases that cause significant economic losses, while Helicoverpa armigera, Aphis craccivora, cowpea weevil are the three major pre-harvest pest of chickpea. Several biological, chemical, cultural and, agronomical practices are used to control biotic stress, apart from that few modern biotechnological approaches also developed for high yielding and biotic stress resistant varieties. This paper aims to elaborate about different biotic stresses that affect Chickpea plant, their management strategies including traditional chemicals and adaptation of transgenic varieties with their limitations and also enlightened newer ray of hope i.e., plant growth promoting rhizobacteria that holds the ability to combat against biotic stress by mitigating stress ethylene level.

Keywords

Biotic stress Cicer arietinum L. Modern biotechnological Management strategies Plant growth promoting rhizobacteria

Article Details

How to Cite
Deshmukh, V. V., Masih, S., Divyanshukumar, P., & Maxton, A. (2023). Biotic stress alleviating strategies in chickpea . Environment Conservation Journal, 24(4), 323–334. https://doi.org/10.36953/ECJ.22932590

References

  1. Ahmad, M., Arif, M.I. & Ahmad, Z. (2001). Resistance to carbamate insecticides in Helicoverpaarmigera (Lepidoptera: Noctuidae) in Pakistan. Crop Protection, 20 (5), 427-432. DOI: https://doi.org/10.1016/S0261-2194(00)00168-X
  2. Anjajah, V., Cornelis, P., Koedam, N. (2003). Effect of genotype and root colonization in biological control of Fusarium wilt in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Canadian Journal of Microbiology. 49: 85-91. DOI: https://doi.org/10.1139/w03-011
  3. Basaiah, T., Krishnappa, M. &Chakravarthy, C.N. (2006). Location and transmission of Alternariasolani, Fusariumoxysporum in tomato. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 8. 45-48.
  4. Basha, S. J., Sarma, A.S.R. &Ahammed, S.K. (2017). Agronomic Manipulations for Pests and Diseases Management in Chickpea: A Review. International Journal of Pure and Applied Biosciences. 5(2): 842-849. DOI: https://doi.org/10.18782/2320-7051.2766
  5. Bayraktar, H., Dolar, F.S. &Tör, M. (2007). Determination of genetic diversity within Ascochytarabiei (Pass.) Labr., the cause of ascochyta blight of chickpea in Turkey. Journal of Plant Pathology, 83(9), 341-347.
  6. Biratu, K.H. (2017) Review Paper on Status, Distribution & the management of chickpea, Botrytis Grey Mould (Botrytis cinerea). Journal of Biology, Agriculture and Healthcare, 70(3), 21-32.
  7. Cappuccino, J., Sherman, N. (1992). Microbiology: a laboratory manual. 3rd ed. Benjamin-Cummings Pub Co (B.c.P); New York, NY, USA. pp. 125–179.
  8. Chandra, S., Singh, S.P., Satyavathi, C.T. Sankar, S.M., Singh, A.M. &Bhat, J.S. (1974). enetics of fertility restoration for the A1 cytoplasmic genic male sterility system in pearl millet (Pennisetumglaucum (L.) R. Br.) Indian of Genetics and Plant Breeding. 34: 257- 262.
  9. Dahiya, S.S., Chauhan, Y.S., Johansen, C. &Shanower, T.G. (1999). Adjusting pigeonpea sowing time to manage pod borer infestation. International Chickpea Newsletter, 6, 44-45.
  10. Dasgupta, S., Meisner, C. & Wheeler, D. (2007). Is environmentally friendly agriculture less profitable for farmers? Evidence on integrated pest management in Bangladesh. Applied Economic Perspectives & Policy, 29(1), 103-118. DOI: https://doi.org/10.1111/j.1467-9353.2006.00332.x
  11. Davies, A.M.R., Maxted, N. & Van der Maesen, L.J.G. (2007). A natural infrageneric classification for Cicer (Leguminosae, Cicereae). Blumea-Biodiversity, Evolution and Biogeography of Plants, 52(2), 379-400. DOI: https://doi.org/10.3767/000651907X609124
  12. del Carmen Orozco-Mosqueda, M., Fadiji, A.E., Babalola, O.O. &Santoyo, G. (2023). Bacterial elicitors of the plant immune system: An overview and the way forward. Plant Stress, p.100138. DOI: https://doi.org/10.1016/j.stress.2023.100138
  13. Dhawale, S.N. &Dhale, D.A. (2021). Effects of fusarium wilt on chickpea in India: A review. Indian Journal of Botany Studies, 6(4), 884-890.
  14. Figueiredo, M.V.B., Martinez, C.R., Burity, H.A. &Chanway, C.P. (2008). Plant growth-promoting rhizobacteria for improving nodulation & nitrogen fixation in the common bean (Phaseolus vulgaris L.). World Journal of Microbiology & Biotechnology, 24, 1187-1193. DOI: https://doi.org/10.1007/s11274-007-9591-4
  15. Foresto, E., Carezzano, M.E., Giordano, W. &Bogino, P. (2023) Ascochyta Blight in Chickpea: An Update. Journal of Fungi. 9(2):203. https://doi.org/10.3390/jof9020203 DOI: https://doi.org/10.3390/jof9020203
  16. Fox, T.R., Comerford, N.B. &McFee, W.W. (1990). Phosphorus and aluminium release from a spodic horizon mediated by organic acids. Soil Science Society of American Journal. 54: 1763-1767. DOI: https://doi.org/10.2136/sssaj1990.03615995005400060043x
  17. Fravel, D., Olivain, C. &Alabouvette, C. (2003). Fusariumoxysporum and its biocontrol. New Phytologist. 157(3): 493-502. DOI: https://doi.org/10.1046/j.1469-8137.2003.00700.x
  18. Fridlender, M., Inbar, J. & Chet, I. (1993). Biological control of soilborne pathogens by a ß-13 glucanase producing Pseudomonas cepacia. Soil Biology. 25: 1211-1221. DOI: https://doi.org/10.1016/0038-0717(93)90217-Y
  19. Gan, Y.T., Siddique, K.H.M., MacLeod, W.J. &Jayakumar, P. (2006). Management options for minimizing the damage by ascochyta blight (Ascochytarabiei) in chickpea (Cicerarietinum L.). Field Crops Research, 97(2-3), 121-134. DOI: https://doi.org/10.1016/j.fcr.2005.10.002
  20. Grundy, P.R., Sequeira, R.V. & Short, K.S. (2004). Evaluating legume species as alternative trap crops to chickpea for management of Helicoverpa spp. (Lepidoptera: Noctuidae) in central Queensland cotton cropping systems. Bulletin of entomological research, 94(6), 481-486. DOI: https://doi.org/10.1079/BER2004327
  21. Gurjar, G., Mishra, M., Kotkar, H., Upasani, M., Soni, P., Tamhane, V., Kadoo, N., Giri, A. & Gupta, V. (2011). Major biotic stresses of chickpeas and strategies for their control. Pests and Pathogens:Management Strategies. B S publications.
  22. Haobing, Li., Rodda, M., Gnanasambandam, A., Aftab, M., Redden, R., Hobson, R., Rosewarne, G., Materne, M., Kaur, S. & Slater, A. T. (2015). Breeding for biotic stress resistance in chickpea: progress and prospects. Euphytica, 204, 257–288.
  23. Jendoubi, W. Bouhadida, M. Boukteb, A. Béji, M. and Kharrat, M. (2017). Fusarium Wilt Affecting Chickpea Crop. Agriculture, 7, 23. https://doi.org/10.3390/agriculture7030023. DOI: https://doi.org/10.3390/agriculture7030023
  24. Jukanti, A.K., Gaur, P.M., Gowda, C.L. &Chibbar, R.N. (2012). Nutritional quality and health benefits of chickpea (Cicerarietinum L.): a review. British Journal of Nutrition. 108:11-26. doi: 10.1017/S0007114512000797. DOI: https://doi.org/10.1017/S0007114512000797
  25. Kamali, M., Ahmadi, J., Naeimi, J. &Guo, D. (2019). Characterization of Bacillus Isolates from the Rhizosphere of Tomato Suppressing Fusarium Wilt Disease. ActaPhytopathologicaetEntomologicaHungarica. 54: 53–68 (2019) DOI: 10.1556/038.54.2019.006 DOI: https://doi.org/10.1556/038.54.2019.006
  26. Kaul, J., Kumar, S. &Gurha, S.N. (2007). Evaluation of exotic germplasm of kabuli chickpea. Indian Journal of Plant Genetic Resources, 20(2),160-164.
  27. Kloepper, J.W., Gutierrez-Estrada, A. &McInroy, J.A. (2007). Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 53(2),159-167. DOI: https://doi.org/10.1139/w06-114
  28. Knights, E. & Siddique, K.H.M. (2002) Chickpea Status and Production Constraints in Autralia. In: Abu Bakr, M.., Siddique, K.H.M. and Johansen, C. (eds) Integrated management of Botrytis Grey Mould of Chickpea in Bangladesh and Australia. Bangladesh Agricultural Research Institute, Joydepur, Gazipur, Bangladesh, pp.33-41.
  29. Kukreja, S., Salaria, N., Thakur, K. &Goutam, U. (2018). Fungal disease management in chickpea: current status and future prospects. Fungi and their role in sustainable development: current perspectives, pp.293-309. DOI: https://doi.org/10.1007/978-981-13-0393-7_17
  30. Kumar, M., Brar, A., Yadav, M., Chawade, A., Vivekanand, V. &Pareek, N. (2018). Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens. Agriculture. 8(7):88. https://doi.org/10.3390/agriculture8070088. DOI: https://doi.org/10.3390/agriculture8070088
  31. Kumar, S., Meena, N.L., Meena, N.K., Rohith, A. &Deora, A. (2021). Management of Fusariumoxysporum f. sp. radiciscucumerinum causing root and stem rot of cucumber by In vitro evaluation of bio-efficacy of botanicals: A review. Pharma Innovation Journal. 10(9): 1072-1075.
  32. Li, H., Rodda, M., Gnanasambandam, A., Aftab, M., Redden, R., Hobson, K., Rosewarne, G., Materne, M., Kaur, S. & Slater, A.T. (2015). Breeding for biotic stress resistance in chickpea: progress & prospects. Euphytica, 204, 257-288. DOI: https://doi.org/10.1007/s10681-015-1462-8
  33. Liu, N., Xu, S., Yao, X., Zhang, G., Mao, W., Hu, Q., Feng, Z. & Gong, Y. (2016). Studies on the Control of Ascochyta Blight in Field Peas (Pisumsativum L.) Caused by Ascochytapinodes in Zhejiang Province, China. Frontiers in Microbiology, 7, https://doi.org/10.3389/fmicb.2016.00481. DOI: https://doi.org/10.3389/fmicb.2016.00481
  34. Lodhi, N.A.K., Abbas, A., Waris, W., Asad, M. &Aslam, M.M. (2006). Chickpea wilt and its management strategies–a review paper. Imperial Journal of Interdisciplinary Research, 2(11), 1281-90.
  35. Lukus, P.K., Doma, K.M. & Duncan, A.M. (2020). The Role of Pulses in Cardiovascular Disease Risk for Adults With Diabetes. American Journal of Lifestyle Medicine.14(6):571-584. doi: 10.1177/1559827620916698. DOI: https://doi.org/10.1177/1559827620916698
  36. Mahmoud, E.A.E. (2021). Biotic Stress to Legumes: Fungal Diseases as Major Biotic Stress Factor, In: Sustainable Agriculture Reviews 51, (Legume Agriculture and Biotechnology Vol 2), Editors: Praveen Guleria, Vineet Kumar, Eric Lichtfouse, Springer Cham. DOI: https://doi.org/10.1007/978-3-030-68828-8_7
  37. Management of pyrethroid&endosulfan resistance in Helicoverpaarmigera (Lepidoptera: Noctuidae) in Australia., (Supplement No. 1).
  38. Manjunatha, L., Chaturvedi, S.K., Mondal, B., Srivastava, A.K., Kumar, Y., Kumar, K., Sewak, S., Dixit, G.P. & Singh, N.P. (2019). Evaluation of wild germplasm accessions against Botrytis gray mould in Chickpea. Journal of Food Legumes, 32(1), 33-35.
  39. Manjunatha, Puyam, A., Prema, G.U., Bandi, S.M., Kumar, R., Keerthi, M.C. (2022). Chickpea Biotic Stresses. In Genomic Designing for Biotic Stress Resistant Pulse Crops, 117-159 doi. https://doi.org/10.1007/978-3-030-91043-3 DOI: https://doi.org/10.1007/978-3-030-91043-3_2
  40. Maxton, A., Singh, P. &Masih, S.A. (2017a). ACC deaminase producing bacteria mediated drought & salt tolerance in Capsicum annum. Journal of Plant Nutrition. 41:574-583. DOI: https://doi.org/10.1080/01904167.2017.1392574
  41. Maxton, A., Singh, P., Aruna, A., Prasad, S.M. &Masih, S.A. (2018a) PGPR: A Boon in Stress Tolerance. Research Journal of Biotechnology. 13(2): 105-11.
  42. Maxton, A., Singh, P., Aruna, A., Prasad, S.M. &Masih, S.A.(2107c) Characterization of ACC deaminase producing B. cepacia, C. freundii& S. marcescensfor plant growth promoting activity. International Journal of Current Microbiology & Applied Sciences.6(8): 883-897. Maxton, A., Singh, P., Prasad, S.M., Aruna, A. &Masih, S.A. (2017b). In-vitro Screening of B. cepacia, C. freundii& S. marcescensfor Antagonistic efficacy. Journal of Pure & Applied Microbiology. 11(3): 1523-1534. DOI: https://doi.org/10.22207/JPAM.11.3.37
  43. Maxton, A., Singh, P., Singh, R.S. Singh, A.W. &Masih, S.A. (2017b). Evidence of B. cepacia, C. freundii& S. marcescensas potential agents inducing increased plant growth & heavy metal (Cd, Cr, Pb) metals. Asian Journal of Microbiology Biotechnology & Environmental Sciences. 20(1): 280-287.
  44. Moradi, H., Bahman, B., Jahanshir, A., Siosemardeh, A. &Kaveh, H.A. (2012). Suppression of chickpea (Cicerarietinum L.) Fusarium wilt by Bacillus subtillis and Trichodermaharzianum. Plant OMICS. 5: 68-74.
  45. Nagoba, B. &Vedapathak, D.V. (2011). Medical applications of siderophores–a review. European Journal of General Medicine, 8(3), 230-233. DOI: https://doi.org/10.29333/ejgm/82743
  46. Neilands, J.B. (1995). Siderophores: structure & function of microbial iron transport compounds. Journal of Biological Chemistry, 270(45), 26723-26726. DOI: https://doi.org/10.1074/jbc.270.45.26723
  47. Nene, Y.L., Reddy, M.V., Haware, M.P., Ghanekar, A.M., Amin, K.S., Pande, S. & Sharma, M., 2012. Field diagnosis of chickpea diseases & their control. Information bulletin no. 28 (revised). International Crops Research Institute for the Semi-Arid Tropics, India.
  48. Nikam, P.S., Jagtap, G.P. &Sontakke, P.L. (2007). Management of chickpea wilt caused by fusariumoxysporium f. sp. ciceri. African Journal of Agricultural Research, 2(12), 692-697.
  49. Orozco-Mosqueda, M.D.C., Santoyo, G. & Glick, B.R. (2023). Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. Plants, 12(3), 606. DOI: https://doi.org/10.3390/plants12030606
  50. Pande, S., Galloway, J., Gaur, P.M., Siddique, K.H.M., Tripathi, H.S., Taylor, P., MacLeod, M.W.J., Basandrai, A.K., Bakr, A., Joshi, S. & Kishore, G.K. (2006). Botrytis grey mould of chickpea: a review of biology, epidemiology, & disease management. Australian Journal of Agricultural Research, 57(11), 1137-1150. DOI: https://doi.org/10.1071/AR06120
  51. Pande, S., Singh, G., Rao, J. N., Bakr, M.A.., Chaurasia, P.C.P., Joshi, S. Johansen, C., Singh, S.D., Kumar, J., Rahman, M.M &Gowda, C.L.L. (2002). Integrated anagement of botrytis gray mold of chickpea. Information Bulletin No. 61, ICRISAT, Andhra Pradesh, India.
  52. Pandey, M., Maurya, A.K. & John, V. (2022). Fusarium Wilt of Chick Pea and Its Management: Present and Future Prospects. In: Emerging Sustainability Trends in Agricultural, Rural & Environmental Development. Ed: Pant, H., Srivastava, D.K., Chaudhary, B., Singh, M.K. Mathur, V., Verma, J., Mishra, J. & Singh, H. 229-237
  53. Podile, A.R. & Kishore, G.K. (2006). Plant growth-promoting rhizobacteria. In: Gnanamanickam SS, editor. Plant-Associated Bacteria. Springer; Netherlands. pp. 195–230 DOI: https://doi.org/10.1007/978-1-4020-4538-7_6
  54. Pramanik, S., Mohanto, S., Manne, R., Rajendran, R.R., Deepak, A., Edapully, S.J., Patil, T. &Katari, O. (2021). Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Molecular Pharmma. 18(10), 3671-3718. doi: 10.1021/acs.molpharmaceut.1c00491. DOI: https://doi.org/10.1021/acs.molpharmaceut.1c00491
  55. Ramanamma, K.V., Jayalakshmi, B.V.B., Jayalakshmi, R.S. & Prasad, K.V.H. (2020). Identification of races of Fusariumoxysporumf.sp. ciceris, incitingwilt of chickpea in Andhra Pradesh and parts of Telangana. Legume Research. 10.18805/LR-4393
  56. Rana, D.S., Dass, A., Rajanna, G.A. & Kaur, R. (2016). Biotic & abiotic stress management in pulses. Indian Journal of Agronomy, 61, 238-248.
  57. Rasool, N. (2022). Plant Hormones: Role in Alleviating Biotic Stress. Plant Hormones: Recent Advances, New Perspectives and Applications, IntechOpen, doi:10.5772/intechopen.102689. DOI: https://doi.org/10.5772/intechopen.102689
  58. Rasool, S., Latef, A.A.H.A. & Ahmad, P. (2015). Chickpea: role & responses under abiotic & biotic stress. Legumes under environmental stress: yield, improvement and adaptations, John Wiley and Sons. p.67-79. DOI: https://doi.org/10.1002/9781118917091.ch4
  59. Richardson, A.E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9), 897-906. DOI: https://doi.org/10.1071/PP01093
  60. Schmidt, C.S., Agostini, F., Leifert, C., Killham, K. (2004). Influence of soil tempereature and matric potential on sugar beet seedlimg colonization and suupression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens andBacilliussubtilis. Phytopathology. 94: 351-363. DOI: https://doi.org/10.1094/PHYTO.2004.94.4.351
  61. Sharma, M., Ghosh, R. &Pande, S. (2015). Dry root rot (Rhizoctoniabataticola (Taub.) Butler): an emerging disease of chickpea–where do we standand. Archives of Phytopathology and Plant Protection, 48(13-16), 797-812. DOI: https://doi.org/10.1080/03235408.2016.1140564
  62. Singh, G.U.R.D.I.P., Chen, W., Rubiales, D.I.E.G.O., Moore, K.E.V.I.N., Sharma, Y.R. &Gan, Y. (2007). Diseases & their management. In Chickpea breeding and management. p. 497-519. Wallingford UK: CABI. DOI: https://doi.org/10.1079/9781845932138.024
  63. Singh, M.K., Mathur, V., Verma, J., Mishra, N. & Singh, H. (2022). Fusarium wilt of chick pea and its management: Present and future prospect. Agriculture, 7(3), 23-38.
  64. Singh, S. & Chand, H. (2004). Effect of Extract of Some Medicinal Plants on Spore germination of Chickpea Wilt Pathogen Fusarium oxysporum f. sp. Ciceri (Pad). snyd. and Hans. Indian Journal of Plant Protection. 32 (1): 162-163.
  65. Valetti, L., Cazón, L.I., Crociara, C. & Pastor, S. (2021). Early detection of Ascochyta blight (Ascochytarabiei) of chickpea by traditional PCR. Crop Protection, 143, 105463. DOI: https://doi.org/10.1016/j.cropro.2020.105463
  66. Verma, P., Kumar, R., Solanki, R.K., Jadon, C. & Kumar, P. (2021). Chickpea (Cicerarietinum L.) scenario in India & south eastern Rajasthan: a review. International Journal of Current Microbiology & Applied Sciences, 10, 1057-1067. DOI: https://doi.org/10.20546/ijcmas.2021.1001.128
  67. Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255, 571-586. DOI: https://doi.org/10.1023/A:1026037216893
  68. Wani, P.A., Khan, M.S. & Zaidi, A. (2007). Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field- grown chickpea. Journal of Plant Nutrition and Soil Science 170: 283-287. DOI: https://doi.org/10.1002/jpln.200620602
  69. Whipps, J.M. &Gerhardson, B. (2007). Biological pesticides for control of seed- and soil-borne plant pathogens, p. 479–501. In J.D. Van Elsas, J.D. Jansson, and J.T. Trevors (eds), Modern Soil Microbiology 2nd edition. Boca Raton, FL, USA: CRC Press.
  70. Zer, H. &Ohad, I. (2003). Light, redox state, thylakoid-protein phosphorylation and signaling gene expression. Trends in Biochemical Sciences, 28(9): 467-470. DOI: https://doi.org/10.1016/S0968-0004(03)00173-7
  71. Zhang, F.S., Ma, J. & Cao, Y.P. (1997). Phosphorus deficiency enhances root exudation of low molecular weight organic acids and utilization of sparingly soluble inorganic phosphate by radish (Raghanussativus L.) and rape (Brassica napus L.) plants. Plant Soil. 196: 261-264. DOI: https://doi.org/10.1007/978-94-009-0047-9_88