Main Article Content


Rice is a vital staple food, especially in Asia, but it is highly susceptible to drought, leading to significant yield losses. To ensure food sustainability, drought-tolerant rice varieties are essential. Conventional breeding methods improve drought tolerance by focusing on biometric traits like root depth, avoidance, escape, and tolerance. This involves screening and crossing drought-tolerant varieties with high-yielding ones, followed by selection and evaluation. Techniques such as pedigree selection, recurrent selection, and backcrossing introduce desirable genes to enhance drought tolerance. Induced mutation through radiation exposure is also used. The molecular basis of drought tolerance involves identifying and manipulating genes responsible for rice's response to water stress. Techniques like QTL analysis, transcriptomics, genomics, and proteomics identify genes and QTLs associated with drought tolerance. Important genes involved in drought response include DREB, LEA, and ROS scavenging genes. Identifying QTLs enables the development of molecular markers for efficient screening of drought-tolerant rice genotypes. In conclusion, conventional breeding and molecular approaches are employed to develop drought-tolerant rice varieties. Conventional breeding improves biometric traits, while molecular techniques identify and manipulate specific genes associated with drought tolerance. This combination holds promise for high-yielding and drought-tolerant rice cultivars, contributing to global food security. However, further research is needed to understand the complex genetic mechanisms underlying drought tolerance in rice and enhance breeding precision and efficiency.


Breeding Climate-change Drought tolerance Genes Markers Rice QTLs

Article Details

How to Cite
Banoth, M., Nunavath, U. S., Bhimireddy, S., Konne , D., Lekshmi L, A., Govada, V., & Lavudya, S. (2023). Conventional and molecular breeding strategies for improvement of drought tolerance cultivars in rice: Recent approaches and outlooks. Environment Conservation Journal, 24(4), 367–381.


  1. Aldemir, S., Ateş, D., Temel, H. Y., Yağmur, B., Alsaleh, A., Kahriman, A. & Tanyolac, M. B. (2017). QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turkish Journal of Agriculture and Forestry, 41(4), 243-255. DOI:
  2. Ali, M. L., Pathan, M. S., Zhang, J., Bai, G., Sarkarung, S., & Nguyen, H. T. (2000). Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theoretical and Applied Genetics, 101(1):756-766. DOI:
  3. Atkinson N. J, & Urwin P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of experimental botany, 63(10):3523-43. DOI:
  4. Asim, A., Gokce, Z. N. O., Bakhsh, A., Cayli, I.T., Aksoy, E., Caliskan, S., & Demirel, U. (2021). Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p. Turkish Journal of Agriculture and Forestry, 45(5), 651-668. DOI:
  5. Babu, R. C., Zhang, J., Blum, A., Ho, T. H. D., Wu, R., & Nguyen, H. T. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science, 166(4):855-862. DOI:
  6. Barik, S. R., Pandit, E., Pradhan, S. K., Mohanty, S. P., & Mohapatra, T. (2019). Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice. PLoS One, 14(12):e0214979. DOI:
  7. Capell, T., Bassie, L., & Christou, P. (2004). Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences, 101(26):9909-9914. DOI:
  8. Chaum, S., & Kirdmanee, C. (2010). Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish Journal of Agriculture and Forestry, 34(6), 517-527. DOI:
  9. Chourasia, K. N. (2017). Resistance/Tolerance mechanism under water deficit (Drought) condition in plants. Int. J. Curr. Microbiol. App. Sci, 6(4):66-78. DOI:
  10. Cicek, N., Fedina, I., Çakirlar, H., Velitchkova, M., & Georgieva, K. (2012). The role of short-term high temperature pretreatment on the UV-B tolerance of barley cultivars. Turkish Journal of Agriculture and Forestry, 36(2), 153-165. DOI:
  11. Dash, P. K., Rai, R., Rai, V., & Pasupalak, S. (2018). Drought induced signaling in rice: delineating canonical and non-canonical pathways. Frontiers in Chemistry, 6:264. DOI:
  12. Dixit, S., Singh, A., Sta Cruz, M. T., Maturan, P. T., Amante, M., & Kumar, A. (2014). Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. Bmc Genetics, 15(1):1-3. DOI:
  13. Du, H., Wang, N., Cui, F., Li, X., Xiao, & J., Xiong, L. (2010). Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant physiology, 154(3):1304-18. DOI:
  14. Efendi, B., Sabaruddin, Z., & Lukman, H. (2017). Mutation with gamma rays irradiation to assemble green super rice tolerant to drought stress and high yield rice (Oryza sativa l.). Int. J. Adv. Sci. Eng. Tech, 5:1-5.
  15. Fahliani, R. A., Khodambashi, M., Houshmand, S., Arzani, A., & Sorkheh, K. (2011). Heritability for some agronomic characters of rice (Oryza sativa L.) and their linked microsatellites identification. Turkish Journal of Agriculture and Forestry, 35(5), 481-490. DOI:
  16. Fu, J., Wu, H., Ma, S., Xiang, D., Liu, R., 7 Xiong, L. (2017). OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Frontiers in plant science, 8. DOI:
  17. Gosal, S. S., Wani, S. H., & Kang, M. S. (2009). Biotechnology and drought tolerance. Journal of Crop Improvement, 23(1):19-54. DOI:
  18. Gupta, A., Rico-Medina, A., & Cano-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488):266-9. DOI:
  19. Hallajian, M. T., Ebadi, A. A., Mohammadi, M., Muminjanov, H., Jamali, S. S, & Aghamirzaei, M. (2014). Integration of Mutation and Conventional Breeding Approaches to Develop New Superior Drought-tolerant Plants in Rice (Oryza sativa). Annual Research & Review in Biology, 2014:1173-86. DOI:
  20. Huang, X. Y., Chao, D. Y., Gao, J. P., Zhu, M. Z., Shi, M., & Lin, H.X. (2009). A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & development, 23(15):1805-17. DOI:
  21. Jang, I. C., Oh, S. J., Seo, J. S., Choi, W. B., Song, S. I., Kim, C. H., Kim, Y. S., Seo, H. S., Choi, Y. D., Nahm, B. H., & Kim, J. K. (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant physiology, 131(2):516-24. DOI:
  22. Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: current understanding and future directions. Frontiers in Plant Science, 7:1029. DOI:
  23. Kanneganti, V., & Gupta, A. K. (2008). Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 66(1):445-462. DOI:
  24. Kaya, C., Sonmez, O., Aydemir, S., & Dikilitas, M. (2013). Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turkish Journal of Agriculture and forestry, 37(2), 188-194. DOI:
  25. Khowaja, F. S., & Price, A. H. (2008). QTL mapping rolling, stomatal conductance and dimension traits of excised leaves in the Bala× Azucena recombinant inbred population of rice. Field Crops Research, 106(3):248-257. DOI:
  26. Khush, G. S. (1984). IRRI breeding program and its worldwide impact on increasing rice production. InGene manipulation in plant improvement 61-94 Springer, Boston, MA. DOI:
  27. Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root response to drought stress in rice (Oryza sativa L.). International journal of molecular sciences, 21(4):1513. DOI:
  28. Kumar, A., Dixit, S., Ram, T., Yadaw, R. B., Mishra, K. K., & Mandal, N. P. (2014). Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of experimental botany, 65(21):6265-6278. DOI:
  29. Kumar, M. N., & Verslues, P. E. (2015). Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiologia Plantarum, 154(3):369-380. DOI:
  30. Kumar, A., Basu, S., Ramegowda, V., & Pereira, A. (2017). Mechanisms of drought tolerance in rice. Burleigh Dodds Sci, Publ. Ltd.131-63. DOI:
  31. Lafitte, H. R., Li, Z. K., Vijayakumar, C. H., Gao, Y. M., Shi, Y., Xu, J. L., Fu, B. Y., Yu, S. B., Ali, A. J., Domingo, J., & Maghirang, R. (2006). Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Research, 2006 May 5; 97(1):77-86. DOI:
  32. Li, H. W., Zang, B. S., Deng, X. W., & Wang, X.P. (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 234(5):1007-18. DOI:
  33. Lin, M. H., Lin, C. W., Chen, J. C., Lin, Y. C., Cheng, S. Y., Liu, T. H., Jan, F. J., Wu, S. T., Thseng, F. S., & Ku, H. M. (2007). Tagging rice drought-related QTL with SSR DNA markers. Crop Environ, 4(1):65-76.
  34. Liu, C., Mao, B., Ou, S., Wang, W., Liu, L., Wu, Y., Chu, C., & Wang, X. (2014). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant molecular biology, 84(1):19-36. DOI:
  35. Lou, Q., Chen, L., Mei, H., Wei, H., Feng, F., Wang, P., ... & Luo, L. (2015). Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. Journal of experimental botany, 66(15): 4749-4757. DOI:
  36. Melandri, G., AbdElgawad, H., Riewe, D., Hageman, J. A., Asard, H., Beemster, G. T., Kadam, N., Jagadish, K., Altmann, T., Ruyter-Spira, C., & Bouwmeester, H. (2020). Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany, 71(2):669-83. DOI:
  37. Maqsood, M., Shehzad, M. A., Ali, S. N., & Iqbal, M. (2013). Rice cultures and nitrogen rate effects on yield and quality of rice (Oryza sativa L.). Turkish Journal of Agriculture and Forestry, 37(6), 665-673. DOI:
  38. Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Blast resistance in rice: a review of conventional breeding to molecular approaches. Molecular biology report, 40(3):2369-88. DOI:
  39. Myers, S. S., Smith, M. R., Guth, S., Golden, C.D., Vaitla, B., Mueller, N. D., Dangour, A. D., & Huybers, P. (2017). Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annual review of public health. DOI:
  40. Oladosu, Y., Rafii, M. Y., Abdullah, N., Abdul Malek, M., Rahim, H. A., Hussin, G., Abdul Latif, M., & Kareem, I. (2014). Genetic variability and selection criteria in rice mutant lines as revealed by quantitative traits. The Scientific World Journal, 13 (1), 16-27. DOI:
  41. Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Miah, G., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment, 30(1):1-6. DOI:
  42. Oladosu, Y., Rafii, M. Y., Abdullah, N., Malek, M. A., Rahim, H. A., Hussin, G., Ismail, M. R., Latif, M. A., & Kareem, I. (2015). Genetic variability and diversity of mutant rice revealed by quantitative traits and molecular markers. Agrociencia, 49(3):249-66.
  43. Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z. S., Muhammad, I. I., & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: a review. International journal of molecular sciences, 20(14):3519. DOI:
  44. Panda, D., Mishra, S. S., & Behera, P. K. (2021). Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Science, 28(2):119-32. DOI:
  45. Pandey, V., & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice science, 22(4):147-61. DOI:
  46. Pang, Y., Chen, K., Wang, X., Xu, J., Ali, J., & Li, Z. (2017). Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Euphytica, 213(12):1-3. DOI:
  47. Phung, T. H., Jung, H. I., Park, J. H., Kim, J. G., Back, K., & Jung, S. (2011). Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant physiology, 157(4):1746-1764. DOI:
  48. Rahman. H., Ramanathan, V., Nallathambi, J., Duraialagaraja, S., & Muthurajan, R. (2016). Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC biotechnology, 16(1):7-20. DOI:
  49. Raineri, J., Wang, S., Peleg, Z., Blumwald, E., & Chan, R. L. (2015). The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant molecular biology, 88(4):401-13. DOI:
  50. Ramchander, S., Raveendran, M., & Robin, S. (2016). Mapping QTLs for physiological traits associated with drought tolerance in rice (Oryza sativa L.). J Investig Genom, 3(3):52. DOI:
  51. Rohila, J. S., Jain, R. K., & Wu, R. (2002). Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Science, 163(3):525-532. DOI:
  52. Sahebi, M., Hanafi, M. M., Rafii, M. Y., Mahmud, T. M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., & Miah, G. (2018). Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. BioMed Research International. DOI:
  53. Samal, R., Roy, P. S., Sahoo, A., Kar, M. K., Patra, B. C., Marndi, B. C., & Gundimeda, J. N. (2018). Morphological and molecular dissection of wild rices from eastern India suggests distinct speciation between O. rufipogon and O. nivara populations. Scientific reports, 8(1):1-3. DOI:
  54. Sellamuthu, R., Ranganathan, C., & Serraj, R. (2015). Mapping QTLs for reproductive‐stage drought resistance traits using an advanced backcross population in upland rice. Crop Science, 55(4):1524-1536. DOI:
  55. Swamy, B. M., & Kumar, A. (2013). Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnology advances, 31(8):1308-1318. DOI:
  56. Shamsudin, N. A., Swamy, B. P., Ratnam, W., Cruz, S., Teressa, M., Raman, A., & Kumar, A. (2016). Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC genetics, 17(1):1-4. DOI:
  57. Shim, J. S., Oh, N., Chung, P. J., Kim, Y. S., Choi, Y. D., Kim, & J. K. (2018). Overexpression of OsNAC14 improves drought tolerance in rice. Frontiers in plant science, 9:310. DOI:
  58. Simkhada, K., & Thapa, R. (2022). Rice Blast, A Major Threat to the Rice Production and its Various Management Techniques. Turkish Journal of Agriculture-Food Science and Technology, 10(2), 147-157. DOI:
  59. Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., Singh, N., Prasad, K. S., Kondayya, K., Rao, P. R., & Rani, M. G. (2016). From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242:278-87. DOI:
  60. Tatar, Ö., Brueck, H., Gevrek, M. N., & Asch, F. (2010). Physiological responses of two Turkish rice (Oryza sativa L.) varieties to salinity. Turkish Journal of Agriculture and Forestry, 34(6), 451-459. DOI:
  61. Trijatmiko, K. R., Supriyanta, Prasetiyono, J., Thomson, M. J., Vera Cruz, C. M., Moeljopawiro, S., & Pereira, A. (2014). Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population. Molecular Breeding, 34, 283-295. DOI:
  62. Tripathy, J. N., Zhang, J., Robin, S., Nguyen, T. T., & Nguyen, H. T. (2000). QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theoretical and Applied Genetics, 100(1): 1197-1202. DOI:
  63. Turral, H., Burke, J., Faurès, J. M. (2011). Climate change, water and food security. Food and agriculture organization of the United Nations (FAO).
  64. Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., & Inoue, H. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature genetics, 45(9):1097-102. DOI:
  65. Upadhyaya, H., & Panda, S. K. (2019). Drought stress responses and its management in rice. In Advances in rice research for abiotic stress tolerance. pp. 177-200. Woodhead Publishing. DOI:
  66. Usman, M. G., Rafii, M. Y., Martini, M. Y., Yusuff, O. A., Ismail, M. R., & Miah, G. (2017). Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnology and Genetic Engineering Reviews, 33(1):26-39. DOI:
  67. Vikram, P., Swamy, B. M., Dixit, S., Trinidad, J., Sta Cruz, M. T., Maturan, P. C., Amante, M., & Kumar, A. (2016). Linkages and interactions analysis of major effect drought grain yield QTLs in rice. PLoS One, 11 (3):e0151532. DOI:
  68. Vinod, K. K., Krishnan, S. G., Thribhuvan, R., & Singh, A. K. (2019). Genetics of drought tolerance, mapping QTLs, candidate genes and their utilization in rice improvement. In Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II (pp. 145-186). Springer, Cham. DOI:
  69. Wang, Y., Zhang, Q., Zheng, T., Cui, Y., Zhang, W., Xu, J., & Li, Z. (2014). Drought-tolerance QTLs commonly detected in two sets of reciprocal introgression lines in rice. Crop and Pasture Science, 65(2):171-184. DOI:
  70. Wei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., Luo, Q., Jin, Z., Li, Y., Zhou, S., & Sun, T. (2014). A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC plant biology, 14(1):1-3. DOI:
  71. Xiang, Y., Tang, N., Du, H., Ye, H., & Xiong, L. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant physiology, 148(4):1938-52. DOI:
  72. Xu, D. Q., Huang, J., Guo, S. Q., Yang, X., Bao, Y. M., Tang, H. J., Zhang, H. S. (2008). Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS letters, 582(7):1037-43. DOI:
  73. Xu, R., Yang, Y., Qin, R., Li, H., Qiu, C., Li, L., Wei, P., & Yang, J. (2016). Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics, 43(8):529-32. DOI:
  74. You, J., Zong, W., Li, X., Ning, J., Hu, H., Li, X., & Xiong, L. (2013). The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. Journal of experimental botany, 64(2):569-583. DOI:
  75. Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(NA):333-49. DOI:
  76. Zhang, L., Xiao, S., Li, W., Feng, W., Li, J., Wu, Z., & Shao, M. (2011). Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. Journal of experimental botany, 62(12):4229-4238. DOI:
  77. Zheng, B. S., Yang, L., Mao, C. Z., Huang, Y. J., & Wu, P. (2008). Mapping QTLs for morphological traits under two water supply conditions at the young seedling stage in rice. Plant Science, 175(6): 767-776. DOI: