Main Article Content


The present study was conducted to determine the response of 55 double haploid (DH) rice lines developed for drought tolerance from the cross Swarna × IR159B in polyethylene glycol (PEG) induced drought stress under in-vitro conditions (DH lines named as double haploid rice lines-DRL). Drought stress was created using PEG-6000 at different level of external water potential. Analyzed seedling traits of DRLs showed significant differences in response to different PEG concentrations. A decrement in plant growth at seedling stage with the increase in PEG concentration was observed as expected. Among 55DRLs, 14 DRLs were found to be drought tolerant sustaining the stress level till -7.5 bar as of the tolerant checks. Further, Drought linked SSRs were also evaluated in developed rice lines. Out of 8 SSRs, RM55 (R2 value- 13.5%) and RM259 (R2 value- 13.9%) found to be exhibiting significant association with the shoot/root ratio at - 7.5 bar stress level. Out of 14 DRLs, 9 DRLs were found to be showing drought tolerant in phenotypic and genotypic screening. Hence, PEG induced stress screening method used in this study will serve as the baseline for screening of rice lines for drought tolerance at very early stage without exploitation of much resource.


Abiotic Stress Haploid Breeding Marker Oryza sativa Root-shoot morphology

Article Details

Author Biographies

Pradeep Goraguddi, Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

M.Sc. in Agriculture (Plant Molocular Biology and Biotechnology)

Pawankumar Kharate, Department of Plant Biotechnology, SDMVM’s College of Agricultural Biotechnology, Aurangabad, Maharashtra, India

Assistant Professor, Department of Plant Biotechnology, SDMVM's College of Agricultural Biotechnology

Shrinkhla Maurya, Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya

How to Cite
Goraguddi, P., Kharate, P., Maurya, S., & Jha, Z. (2023). In-vitro selection of drought tolerant doubled haploid rice lines using polyethylene glycol (PEG). Environment Conservation Journal, 24(4), 52–63.


  1. Akte, J., Yasmin, S., Bhuiyan, M. J. H., Khatun, F., Roy, J., & Goswami, K. (2016). In vitro screening of rice genotypes using polyethylene glycol under drought stress. Progressive agriculture, 27(2), 128-135. DOI:
  2. Candra, A. (2011). Tanggapan Benih Kedelai (Glycine max.[L] Merr.) terhadap Invigorasi dengan PEG 6000 dan Pupuk NPK Susulan dalam Pertumbuhan dan Hasil [Skripsi]. Agronomi–FP Universitas Lampung. Bandar Lampung.
  3. Degenkolbe, T., Do, P. T., Zuther, E., Repsilber, D., Walther, D., Hincha, D. K., & Kohl, K. I. (2009). Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant molecular biology, 69(1), 133-153. DOI:
  4. Ghosh, S., Shahed, M. A., & Robin, A. H. K. (2020). Polyethylene glycol induced osmotic stress affects germination and seedling establishment of wheat genotypes. Plant breeding and biotechnology, 8(2), 174-185. DOI:
  5. Govindaraj, M., Shanmugasundaram, P., Sumathi, P., & Muthiah, A. R. (2010). Simple, rapid and cost-effective screening method for drought resistant breeding in pearl millet. Electronic journal of plant breeding, 1(4), 590-599.
  6. Hadas, A. (1976). Water uptake and germination of leguniinous seeds under changing external water potential in osmotic solutions. Journal of Experimental Botany, 27(3), 480-489. DOI:
  7. Hellal, F. A., El-Shabrawi, H. M., Abd El-Hady, M., Khatab, I. A., El-Sayed, S. A. A., & Abdelly, C. (2018). Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. Journal of Genetic Engineering and Biotechnology, 16(1), 203-212. DOI:
  8. Hibberd, J. M., Sheehy, J. E., & Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice rationale and feasibility. Current opinion in plant biology, 11(2), 228-231. DOI:
  9. Hoad, S. P., Russell, G., Lucas, M. E., & Bingham, I. J. (2001). The management of wheat, barley, and oat root systems. Advances in agronomy 74:193-246. DOI:
  10. Jajarmi, V. (2009). Effect of water stress on germination indices in seven wheat cultivar. World Academy of Science, Engineering and Technology, 49: 105-106.
  11. Kacem, N. S., Delporte, F., Muhovski, Y., Djekoun, A., & Watillon, B. (2017). In vitro screening of durum wheat against water-stress mediated through polyethylene glycol. Journal of genetic engineering and biotechnology, 15(1), 239-247. DOI:
  12. Kadir, A. (2007). Induksi variasi somaklon melalui iradiasi sinar gama dan seleksi in vitro untuk mendapatkan tanaman Nilam toleran terhadap cekaman kekeringan. Disertasi, Bogor: Sekolah Pascasarjana Institut Pertanian Bogor, 173.
  13. Keb-Llanes, M., Gonzalez, G., Chi-Manzanero, B., & Infante, D. (2002). A rapid and simple method for small-scale DNA extraction in Agavaceae and other tropical plants. Plant Molecular Biology Reporter, 20(3), 299-300. DOI:
  14. Khakwani, A. A., Dennett, M. D., & Munir, M. (2011). Early growth response of six wheat varieties under artificial osmotic stress condition. Pakistan Journal of Agricultural Sciences, 48(2), 119-123.
  15. Lagerwerff, J. V., Ogata, G., & Eagle, H. E. (1961). Control of osmotic pressure of culture solutions with polyethylene glycol. Science, 133(3463), 1486-1487. DOI:
  16. Li, X., Waddington, S. R., Dixon, J., Joshi, A. K., & De Vicente, M. C. (2011). The relative importance of drought and other water-related constraints for major food crops in South Asian farming systems. Food Security, 3(1), 19-33. DOI:
  17. Mansour, A.M., & Elbagrmi, T. (2019). Effect of different levels of drought stress on the germination and seedling growth parameters of three wheat cultivars seeds. Journal of Misurata University for Agricultural Sciences, 277-290. DOI:
  18. Moumeni, A., Satoh, K., Kondoh, H., Asano, T., Hosaka, A., Venuprasad, R. & Kikuchi, S. (2011). Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC plant biology, 11(1), 1-17. DOI:
  19. Nepomuceno, A. L., Oosterhuis, D. M., & Stewart, J. M. (1998). Physiological responses of cotton leaves and roots to water deficit induced by polyethylene glycol. Environmental and Experimental Botany, 40(1), 29-41. DOI:
  20. Nurhayati, M., Rahayu, S., Syaukani, I., & Ritonga, S. H. (2017). In vitro selection of drought stress rice (Oryza sativa L.) varieties using PEG (Polyethylene Glycol). Int. J. Sci. Basic and Applied Research (IJSBAR), 32(2), 192-208.
  21. Okoshi, M. (2004). Polymorphic analysis of landraces of Japanese rice using microsatellite markers. Breeding Research, 6, 125-133. DOI:
  22. Prasad, R. (2011). Aerobic rice systems. Advances in agronomy, 111, 207-247. DOI:
  23. Purbajanti, E. D., Kusmiyati, F., Fuskhah, E., Rosyida, R., Adinurani, P. G., & Vincevica-Gaile, Z. (2019, June). Selection for drought-resistant rice (Oryza sativa L.) using polyethylene glycol. In IOP Conference Series: Earth and Environmental Science (Vol. 293, No. 1, p. 012014). IOP Publishing. DOI:
  24. Robbins, N. E., & Dinneny, J. R. (2015). The divining root: moisture-driven responses of roots at the micro-and macro-scale. Journal of Experimental Botany, 66(8), 2145-2154. DOI:
  25. Sabesan, T., & Saravanan, K. (2016). In vitro screening of Indica rice genotypes for drought tolerance using polyethylene glycol. International Journal of advances in agricultural and environmental engineering, 3, 2349-1531. DOI:
  26. Sahoo, J. P., Sharma, V., Verma, R. K., Chetia, S. K., Baruah, A. R., Modi, M. K., & Yadav, V. K. (2019). Linkage analysis for drought tolerance in kharif rice of Assam using microsatellite markers. Indian Journal of Traditional Knowledge, 18(2), 371-375.
  27. Subba, P., Kumar, R., Gayali, S., Shekhar, S., Parveen, S., Pandey, A., & Chakraborty, N. (2013). Characterisation of the nuclear proteome of a dehydration‐sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics, 13(12-13), 1973-1992. DOI:
  28. Swamy, B. M., & Kumar, A. (2013). Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnology advances, 31(8), 1308-1318. DOI:
  29. Thabet, S. G., Moursi, Y. S., Karam, M. A., Graner, A., Alqudah, A.M. (2018) Genetic basis of drought tolerance during seed germination in barley. PLoS ONE, 13(11): e0206682. DOI:
  30. Venuprasad, R., Bool, M. E., Dalid, C. O., Bernier, J., Kumar, A., & Atlin, G. N. (2009). Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica, 167(2), 261-269. DOI:
  31. Verma, S. K., Saxena, R. R., Saxena, R. R., Xalxo, M. S., & Verulkar, S. B. (2014). QTL for grain yield under water stress and non-stress conditions over years in rice ('Oryza sativa'L.). Australian Journal of Crop Science, 8(6).
  32. Wang, X. S., Zhu, J., Mansueto, L., & Bruskiewich, R. (2005). Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map. Journal of Zhejiang University. Science. B, 6(5), 382. DOI:
  33. Wickramasinghe, I.M., & Seran, T.H. (2019). Assessing in vitro germination and seedling growth of tomato (Solanum lycopersicum L.) cv KC-1 in response to polyethylene glycol-induced water stress. Sri Lanka Journal of Food and Agriculture, 5(2), 7-16. DOI:
  34. Widyastuti, Y., Purwoko, B. S., & Yunus, M. (2016). Identifikasi toleransi kekeringan tetua padi hibrida pada fase perkecambahan menggunakan polietilen glikol (PEG) 6000. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 44(3), 235-241. DOI: