Main Article Content

Abstract

Presence of plastics in the surroundings is ubiquitous, as generation of plastics is booming globally and it gets accumulated in oceans leading to deleterious impacts on marine life, public health and the surrounding environment. Owing to its non-degradable nature, plastic particles remain in surroundings for extended periods which automatically facilitate its out spreading. Therefore, there is a need to shift to bio-based plastics, as bio-based green economy hinges on sustainable employment of bioresources for generating a broad spectrum of products, biofuels, chemicals and bioplastics. Typically bioplastics are synthesized from bio-based resources considered to contribute more to sustainable production of plastic as a part of the circular economy. Bioplastics are luring attention and growing as counterfeit material for petroleum-derived plastics owing to their biodegradability. Recently an engrossed interest has been burgeoning in producing drop-in polymers and new-fangled bioplastics by utilizing lignocellulosic feedstock. This paper reviews the enormous potential of lignocellulosic feedstock as a significant inedible substrate for bioplastic synthesis. Polyhydroxyalkanoates, polyurethanes, polylactic acid and starch-bioplastic are prevailing bio-based plastic comparably derived from lignocellulosic biomass. In forthcoming years bioplastic derived years’ bioplastic derived from lignocellulose will loom as valuable material in numerous fields for an extensive range of cutting-edge applications.

Keywords

Biopolymer synthesis pretreatment Polyhydroxyalkanoates Polylactic acid Renewable feedstock

Article Details

Author Biographies

Rajesh Dhankhar, Department of Environmental Science, Maharshi Dayanand University Rohtak, Haryana, India

Department of Environmental science, MDU Rohtak-124001

Professor

Savita Kalshan, Department of Environmental Science, Maharshi Dayanand University Rohtak, Haryana, India

Department of Environmental science, MDU Rohtak-124001

Research scholar

Azad Yadav, Department of Environmental Science, Maharshi Dayanand University Rohtak, Haryana, India

Department of Environmental science, MDU Rohtak-124001

How to Cite
Narwal, S., Dhankhar, R., Kalshan, S., Yadav, P., Yadav, A., & Deswal, T. (2023). Lignocellulosic biomass feedstock: A benchmarking green resource for sustainable production of bioplastics. Environment Conservation Journal, 24(3), 311–325. https://doi.org/10.36953/ECJ.16352517

References

  1. Ahmad, A., Waheed, S., Khan, S. M., Shafiq, M., Farooq, M., Sanaullah, K., & Jamil, T. (2015). Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination, 355, 1-10. DOI: https://doi.org/10.1016/j.desal.2014.10.004
  2. Ahmad, E., & Pant, K. K. (2018). Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. In Waste biorefinery (pp. 409-444). Elsevier. DOI: https://doi.org/10.1016/B978-0-444-63992-9.00014-8
  3. Annamalai, N., & Sivakumar, N. (2016). Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation. Journal of Biotechnology, 237, 13-17. DOI: https://doi.org/10.1016/j.jbiotec.2016.09.001
  4. Araujo, R. C. S., & Pasa, V. M. D. (2003). Mechanical and thermal properties of polyurethane elastomers based on hydroxyl‐terminated polybutadienes and biopitch. Journal of applied polymer science, 88(3), 759-766. DOI: https://doi.org/10.1002/app.11526
  5. Bay, M. S., Karimi, K., Esfahany, M. N., & Kumar, R. (2020). Structural modification of pine and poplar wood by alkali pretreatment to improve ethanol production. Industrial crops and products, 152, 112506. DOI: https://doi.org/10.1016/j.indcrop.2020.112506
  6. Bhatia, S.K., Gurav, R., Choi, T.R., Jung, H.R., Yang, S.Y., Moon, Y.M., 2018. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271, 306e315. DOI: https://doi.org/10.1016/j.biortech.2018.09.122
  7. https:// doi.org/10.1016/j.biortech.2018.09.122.
  8. Budak, K., Sogut, O., & Aydemir Sezer, U. (2020). A review on synthesis and biomedical applications of polyglycolic acid. Journal of polymer research, 27(8), 1-19. DOI: https://doi.org/10.1007/s10965-020-02187-1
  9. Castro, D. O., Passador, F., Ruvolo-Filho, A., & Frollini, E. (2017). Use of castor and canola oils in “biopolyethylene” curauá fiber composites. Composites Part A: Applied Science and Manufacturing, 95, 22-30. DOI: https://doi.org/10.1016/j.compositesa.2016.12.024
  10. Chalermthai, B., Giwa, A., Schmidt, J. E., & Taher, H. (2021). Life cycle assessment of bioplastic production from whey protein obtained from dairy residues. Bioresource Technology Reports, 15, 100695. DOI: https://doi.org/10.1016/j.biteb.2021.100695
  11. Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T. N. B. T., Chew, K. W., Culaba, A., & Jo-Shu, C. (2020). Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal, 7(1), 1115. DOI: https://doi.org/10.18331/BRJ2020.7.1.4
  12. Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., & Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196-206. DOI: https://doi.org/10.1016/j.fuproc.2016.12.007
  13. Chen, W., Chen, Y., Yang, H., Xia, M., Li, K., Chen, X., & Chen, H. (2017). Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresource technology, 245, 860-868. DOI: https://doi.org/10.1016/j.biortech.2017.09.022
  14. Da Silva, A. S. A., Inoue, H., Endo, T., Yano, S., & Bon, E. P. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource technology, 101(19), 7402-7409. DOI: https://doi.org/10.1016/j.biortech.2010.05.008
  15. Davis, R., Kataria, R., Cerrone, F., Woods, T., Kenny, S., O’Donovan, A., (2013). Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour. Technol. 150, 202e209. https://doi.org/10.1016/ j.biortech.2013.10.001 DOI: https://doi.org/10.1016/j.biortech.2013.10.001
  16. De Moraes, J. O., Scheibe, A. S., Sereno, A., & Laurindo, J. B. (2013). Scale-up of the production of cassava starch based films using tape-casting. Journal of Food Engineering, 119(4), 800-808. DOI: https://doi.org/10.1016/j.jfoodeng.2013.07.009
  17. Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., ... & Pothan, L. A. (2015). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2), 1075-1090. DOI: https://doi.org/10.1007/s10570-015-0554-x
  18. Den, W., Sharma, V. K., Lee, M., Nadadur, G., & Varma, R. S. (2018). Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Frontiers in chemistry, 6, 141. DOI: https://doi.org/10.3389/fchem.2018.00141
  19. Diaz, A. B., de Souza Moretti, M. M., Bezerra-Bussoli, C., Nunes, C. D. C. C., Blandino, A., da Silva, R., & Gomes, E. (2015). Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresource technology, 185, 316-323. DOI: https://doi.org/10.1016/j.biortech.2015.02.112
  20. Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238-252. DOI: https://doi.org/10.1016/j.rser.2019.03.050
  21. Duque, A., Manzanares, P., & Ballesteros, M. (2017). Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renewable energy, 114, 1427-1441. DOI: https://doi.org/10.1016/j.renene.2017.06.050
  22. Gadda, T. M., Pirttimaa, M. M., Koivistoinen, O., Richard, P., Penttila, M., & Harlin, A. (2014). The industrial potential of bio-based glycolic acid and polyglycolic acid. Appita: Technology, Innovation, Manufacturing, Environment, 67(1), 12.
  23. Galbe, M., & Wallberg, O. (2019). Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for biofuels, 12(1), 1-26. DOI: https://doi.org/10.1186/s13068-019-1634-1
  24. Garlotta, D. (2001). A literature review of poly (lactic acid). Journal of Polymers and the Environment, 9(2), 63-84. DOI: https://doi.org/10.1023/A:1020200822435
  25. Govil, T., Wang, J., Samanta, D., David, A., Tripathi, A., Rauniyar, S., ... & Sani, R. K. (2020). Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature’s plastics. Journal of cleaner production, 270, 122521. DOI: https://doi.org/10.1016/j.jclepro.2020.122521
  26. Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2019). Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 101, 590-599. DOI: https://doi.org/10.1016/j.rser.2018.11.041
  27. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology, 100(1), 10-18. DOI: https://doi.org/10.1016/j.biortech.2008.05.027
  28. Heng, K. S., Hatti‐Kaul, R., Adam, F., Fukui, T., & Sudesh, K. (2017). Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three‐step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). Journal of Chemical Technology & Biotechnology, 92(1), 100-108. DOI: https://doi.org/10.1002/jctb.4993
  29. Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., ... & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100(10), 2706-2711. DOI: https://doi.org/10.1016/j.biortech.2008.12.057
  30. Huang, Y. F., Chiueh, P. T., Kuan, W. H., & Lo, S. L. (2016). Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics. Energy, 100, 137-144. DOI: https://doi.org/10.1016/j.energy.2016.01.088
  31. Hutley, T. J., & Ouederni, M. (2016). Polyolefins—the history and economic impact. In Polyolefin Compounds and materials (pp. 13-50). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-25982-6_2
  32. Jadaun, J. S., Bansal, S., Sonthalia, A., Rai, A. K., & Singh, S. P. (2022). Biodegradation of plastics for sustainable environment. Bioresource Technology, 126697. DOI: https://doi.org/10.1016/j.biortech.2022.126697
  33. Jem, K. J., & Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60-70. DOI: https://doi.org/10.1016/j.aiepr.2020.01.002
  34. Kargarzadeh, H., Ioelovich, M., Ahmad, I., Thomas, S., & Dufresne, A. (2017). Methods for extraction of nanocellulose from various sources. Handbook of nanocellulose and cellulose nanocomposites, 1, 1-51. DOI: https://doi.org/10.1002/9783527689972.ch1
  35. Karnaouri, A., Asimakopoulou, G., Kalogiannis, K. G., Lappas, A., & Topakas, E. (2020). Efficient d-lactic acid production by Lactobacillus delbrueckii subsp. bulgaricus through conversion of organosolv pretreated lignocellulosic biomass. Biomass and Bioenergy, 140, 105672. DOI: https://doi.org/10.1016/j.biombioe.2020.105672
  36. Kawaguchi, H., Takada, K., Elkasaby, T., Pangestu, R., Toyoshima, M., Kahar, P., ... & Kondo, A. (2022). Recent advances in lignocellulosic biomass white biotechnology for bioplastics. Bioresource Technology, 344, 126165. DOI: https://doi.org/10.1016/j.biortech.2021.126165
  37. Khalil, H. A., Bhat, A. H., & Yusra, A. I. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979. DOI: https://doi.org/10.1016/j.carbpol.2011.08.078
  38. Kim, H., Lee, S., Ahn, Y., Lee, J., & Won, W. (2020). Sustainable production of bioplastics from lignocellulosic biomass: technoeconomic analysis and life-cycle assessment. ACS Sustainable Chemistry & Engineering, 8(33), 12419-12429. DOI: https://doi.org/10.1021/acssuschemeng.0c02872
  39. Koller, M., Miranda de Sousa Dias, M., Rodríguez-Contreras, A., Kunaver, M., Zagar, E., Krzan, A., Braunegg, G., (2015). Liquefied wood as inexpensive precursor-feedstock for bio-mediated incorporation of (R)-3-Hydroxyvalerate into polyhydroxyalkanoates. Materials 8 (9), 6543e6557. https://doi.org/ 10.3390/ma8095321. DOI: https://doi.org/10.3390/ma8095321
  40. Komesu, A., de Oliveira, J. A. R., da Silva Martins, L. H., Maciel, M. R. W., & Maciel Filho, R. (2017). Lactic acid production to purification: a review. BioResources, 12(2), 4364-4383. DOI: https://doi.org/10.15376/biores.12.2.4364-4383
  41. Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., & Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199, 106244. DOI: https://doi.org/10.1016/j.fuproc.2019.106244
  42. Kurańska, M., Aleksander, P., Mikelis, K., & Ugis, C. (2013). Porous polyurethane composites based on bio-components. Composites Science and Technology, 75, 70-76. DOI: https://doi.org/10.1016/j.compscitech.2012.11.014
  43. Lau, W. W., Shiran, Y., Bailey, R. M., Cook, E., Stuchtey, M. R., Koskella, J., & Palardy, J. E. (2020). Evaluating scenarios toward zero plastic pollution. Science, 369(6510), 1455-1461. DOI: https://doi.org/10.1126/science.aba9475
  44. Li, H., Qu, Y., Yang, Y., Chang, S., & Xu, J. (2016). Microwave irradiation–A green and efficient way to pretreat biomass. Bioresource technology, 199, 34-41. DOI: https://doi.org/10.1016/j.biortech.2015.08.099
  45. Li, J., Li, D., Su, Y., Yan, X., Wang, F., Yu, L., & Ma, X. (2022). Efficient and economical production of polyhydroxyalkanoate from sustainable rubber wood hydrolysate and xylose as co-substrate by mixed microbial cultures. Bioresource Technology, 355, 127238. DOI: https://doi.org/10.1016/j.biortech.2022.127238
  46. Li, P., Wang, X., Su, M., Zou, X., Duan, L., & Zhang, H. (2021). Characteristics of plastic pollution in the environment: a review. Bulletin of environmental contamination and toxicology, 107(4), 577-584. DOI: https://doi.org/10.1007/s00128-020-02820-1
  47. Lokesh, B. E., Hamid, Z. A. A., Arai, T., Kosugi, A., Murata, Y., Hashim, R., ... & Sudesh, K. (2012). Potential of oil palm trunk sap as a novel inexpensive renewable carbon feedstock for polyhydroxyalkanoate biosynthesis and as a bacterial growth medium. Clean–Soil, Air, Water, 40(3), 310-317. DOI: https://doi.org/10.1002/clen.201000598
  48. Lopes, M. S., Jardini, A., & Maciel Filho, R. (2014). Synthesis and characterizations of poly (lactic acid) by ring-opening polymerization for biomedical applications. Chemical engineering transactions, 38, 331-336.
  49. Lunelli, B. H., Andrade, R. R., Atala, D. I., Wolf Maciel, M. R., Maugeri Filho, F., & Maciel Filho, R. (2010). Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling. Applied biochemistry and Biotechnology, 161(1), 227-237. DOI: https://doi.org/10.1007/s12010-009-8828-0
  50. Malani, R. S., Malshe, V. C., & Thorat, B. N. (2021). Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass. Journal of Coatings Technology and Research, 1-22. DOI: https://doi.org/10.1007/s11998-021-00490-0
  51. Mankar, A. R., Pandey, A., Modak, A., & Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235. DOI: https://doi.org/10.1016/j.biortech.2021.125235
  52. Mannina, G., Presti, D., Montiel-Jarillo, G., & Suárez-Ojeda, M. E. (2019). Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresource technology, 282, 361-369. DOI: https://doi.org/10.1016/j.biortech.2019.03.037
  53. Matsumoto, K., Kobayashi, H., Ikeda, K., Komanoya, T., Fukuoka, A., Taguchi, S., (2011). Chemo-microbial conversion of cellulose into polyhydroxybutyrate through ruthenium-catalyzed hydrolysis of cellulose into glucose. Bioresour. Technol. 102 (3), 3564e3567. https://doi.org/10.1016/j.biortech.2010.09.098. DOI: https://doi.org/10.1016/j.biortech.2010.09.098
  54. Mondal, S. (2017). Preparation, properties and applications of nanocellulosic materials. Carbohydrate polymers, 163, 301-316. DOI: https://doi.org/10.1016/j.carbpol.2016.12.050
  55. Moorkoth, D., & Nampoothiri, K. M. (2016). Production and characterization of poly (3-hydroxy butyrate-co-3 hydroxyvalerate)(PHBV) by a novel halotolerant mangrove isolate. Bioresource technology, 201, 253-260. DOI: https://doi.org/10.1016/j.biortech.2015.11.046
  56. Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., Dalai, A.K.: Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv. Bioref. 4, 157–191 (2014) DOI: https://doi.org/10.1007/s13399-013-0097-z
  57. Nanda, S., Rana, R., Sarangi, P.K., Dalai, A.K., Kozinski, J.A.: A broad introduction to first, second and third generation biofuels. In: Sarangi, P.K., Nanda, S., Mohanty, P. (eds.) Recent Advancements in Biofuels and Bioenergy Utilization, pp. 1–25. Springer Nature, Singapore (2018) DOI: https://doi.org/10.1007/978-981-13-1307-3_1
  58. Okolie JA, Nanda S, Dalai AK, Kozinski JA (2020) Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz 20:1–25. https://doi.org/10.1007/s12649-020-01123-0 DOI: https://doi.org/10.1007/s12649-020-01123-0
  59. Oliveira, J. A. R. D., Silva Martins, L. H. D., Komesu, A., & Neto, J. M. (2017). Nanotechnology applications on lignocellulosic biomass pretreatment. In Nanotechnology for bioenergy and biofuel production (pp. 19-37). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-45459-7_2
  60. Rahman, R., & Putra, S. Z. F. S. (2019). Tensile properties of natural and synthetic fiber-reinforced polymer composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, 81-102. DOI: https://doi.org/10.1016/B978-0-08-102292-4.00005-9
  61. Raj, T., Chandrasekhar, K., Kumar, A. N., & Kim, S. H. (2022). Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renewable and Sustainable Energy Reviews, 158, 112130. DOI: https://doi.org/10.1016/j.rser.2022.112130
  62. Reshmy, R., Thomas, D., Philip, E., Paul, S. A., Madhavan, A., Sindhu, R., ... & Binod, P. (2021). Bioplastic production from renewable lignocellulosic feedstocks: a review. Reviews in Environmental Science and Bio/Technology, 20(1), 167-187. DOI: https://doi.org/10.1007/s11157-021-09565-1
  63. Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., ... & Mohammadi, A. A. (2020). Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy, 199, 117457. DOI: https://doi.org/10.1016/j.energy.2020.117457
  64. Rhodes, C. J. (2018). Plastic pollution and potential solutions. Science progress, 101(3), 207-260. DOI: https://doi.org/10.3184/003685018X15294876706211
  65. Rodríguez-Zúñiga, U. F., Cannella, D., de Campos Giordano, R., Giordano, R. D. L. C., Jørgensen, H., & Felby, C. (2015). Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green chemistry, 17(5), 2896-2903. DOI: https://doi.org/10.1039/C4GC02179G
  66. Rol, F., Belgacem, M. N., Gandini, A., & Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 88, 241-264. DOI: https://doi.org/10.1016/j.progpolymsci.2018.09.002
  67. Rosales-Calderon, O., & Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for biofuels, 12(1), 1-58.
  68. Rosales-Calderon, O., & Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for biofuels, 12(1), 1-58. DOI: https://doi.org/10.1186/s13068-019-1529-1
  69. Salusjärvi, L., Havukainen, S., Koivistoinen, O., & Toivari, M. (2019). Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Applied microbiology and biotechnology, 103(6), 2525-2535. DOI: https://doi.org/10.1007/s00253-019-09640-2
  70. Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755. https://doi.org/10.1016/j.biortech.2020.122755 DOI: https://doi.org/10.1016/j.biortech.2020.122755
  71. Silva, J. A., Tobella, L. M., Becerra, J., Godoy, F., & Martínez, M. A. (2007). Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. Journal of bioscience and bioengineering, 103(6), 542-546. DOI: https://doi.org/10.1263/jbb.103.542
  72. Sindhu, R., Silviya, N., Binod, P., & Pandey, A. (2013). Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochemical engineering journal, 78, 67-72. DOI: https://doi.org/10.1016/j.bej.2012.12.015
  73. Singh, A., Nanda, S., Berruti, F.: A review of thermochemical and biochemical conversion of miscanthus to biofuels. In: Nanda, S., Vo, D.V.N., Sarangi, P.K. (eds.) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals, pp. 195–220. Springer Nature, Singapore (2020) DOI: https://doi.org/10.1007/978-981-15-1804-1_9
  74. Singla, P., Kaur, P., Mehta, R., Berek, D., & Upadhyay, S. N. (2012). Ring-opening polymerization of lactide using microwave and conventional heating. Procedia Chemistry, 4, 179-185. DOI: https://doi.org/10.1016/j.proche.2012.06.025
  75. Tenorio-Alfonso, A., Sánchez, M., & Franco, J. M. (2020). A review of the sustainable approaches in the production of bio-based polyurethanes and their applications in the adhesive field. Journal of Polymers and the Environment, 28(3), 749-774. DOI: https://doi.org/10.1007/s10924-020-01659-1
  76. Tu, W. C., & Hallett, J. P. (2019). Recent advances in the pretreatment of lignocellulosic biomass. Current opinion in green and sustainable chemistry, 20, 11-17. DOI: https://doi.org/10.1016/j.cogsc.2019.07.004
  77. Unrean, P. (2018). Optimized feeding schemes of simultaneous saccharification and fermentation process for high lactic acid titer from sugarcane bagasse. Industrial Crops and Products, 111, 660-666. DOI: https://doi.org/10.1016/j.indcrop.2017.11.043
  78. Unrean, P., Napathorn, S. C., Tee, K. L., Wong, T. S., & Champreda, V. (2021). Lignin to polyhydroxyalkanoate bioprocessing by novel strain of Pseudomonas monteilii. Biomass Conversion and Biorefinery, 1-7. DOI: https://doi.org/10.1007/s13399-021-01525-7
  79. van der Pol, E. C., Eggink, G., & Weusthuis, R. A. (2016). Production of L (+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnology for biofuels, 9(1), 1-12. DOI: https://doi.org/10.1186/s13068-016-0646-3
  80. Veluchamy, C., Kalamdhad, A. S., & Gilroyed, B. H. (2019). Advanced pretreatment strategies for bioenergy production from biomass and biowaste. Handbook of environmental materials management, 1507-1524. DOI: https://doi.org/10.1007/978-3-319-73645-7_45
  81. Woiciechowski, A. L., Neto, C. J. D., de Souza Vandenberghe, L. P., de Carvalho Neto, D. P., Sydney, A. C. N., Letti, L. A. J., ... & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance–Conventional processing and recent advances. Bioresource technology, 304, 122848. DOI: https://doi.org/10.1016/j.biortech.2020.122848
  82. Yan, X., Li, D., Ma, X., & Li, J. (2021). Bioconversion of renewable lignocellulosic biomass into multicomponent substrate via pressurized hot water pretreatment for bioplastic polyhydroxy alkanoate accumulation. Bioresource Technology, 339, 125667. DOI: https://doi.org/10.1016/j.biortech.2021.125667
  83. Yang, J., Ching, Y. C., & Chuah, C. H. (2019). Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 751. DOI: https://doi.org/10.3390/polym11050751
  84. Yoo, J., Alavi, S., Vadlani, P., & Amanor-Boadu, V. (2011). Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource technology, 102(16), 7583-7590. DOI: https://doi.org/10.1016/j.biortech.2011.04.092
  85. Yoo, Y., & Youngblood, J. P. (2016). Green one-pot synthesis of surface hydrophobized cellulose nanocrystals in aqueous medium. ACS Sustainable Chemistry & Engineering, 4(7), 3927-3938. DOI: https://doi.org/10.1021/acssuschemeng.6b00781
  86. Zhang, J., Cai, D., Qin, Y., Liu, D., & Zhao, X. (2020). High value‐added monomer chemicals and functional bio‐based materials derived from polymeric components of lignocellulose by organosolv fractionation. Biofuels, Bioproducts and Biorefining, 14(2), 371-401. DOI: https://doi.org/10.1002/bbb.2057
  87. Zhou, J., Ouyang, J., Xu, Q., & Zheng, Z. (2016). Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. Bioresource technology, 222, 431-438. DOI: https://doi.org/10.1016/j.biortech.2016.09.119