Main Article Content

Abstract

Endophytes are the microorganisms that are present in living tissue of various plant parts (roots, fruits, stem, seed, leaf etc,). Endophytic microorganisms are good source of antibiotics. Endophytic antagonists were isolated from the roots of healthy acid lime plants collected from major acid lime growing areas of Andhra Pradesh. A total of 8 fungal and 10 bacterial endophytic antagonists were isolated. The antagonists were further subjected to preliminary screening, out of which only 6 endophytic fungal antagonists (EFA 1-6) and 8 endophytic bacterial antagonists (EBA 1-8) isolates showed good inhibitory effect on radial growth of Fusarium solani causing dry root rot in acid lime in vitro. Among them the one of the best fungal and bacterial antagonists that were found to be extremely efficient against Fusarium solani in dual culture assay were selected for further molecular identification. The BLAST results revealed that one of the fungal isolate had shown 100% similarity with Aspergillus fumigatus and one of the bacterial isolate had shown 95.56% similarity with Pseudomonas aeruginosa.

Keywords

dry root-rot Fusarium Solani endophytic antagonists identification

Article Details

How to Cite
Gangupalli, R. S. B., B. G. , R., T., R., Ch., R., & B., T. P. (2023). Molecular characterization of selected fungal and bacterial endophytes in acid lime . Environment Conservation Journal, 24(4), 176–180. https://doi.org/10.36953/ECJ.16312514

References

  1. Abonyi, D.O., Eze, P.M., Abba, C.C., Ujam, N.T., Proksch, P., Okoye, F.B.C., & Esimone, C.O. (2018). Biologically active phenolic acids produced by Aspergillus sp. an endophyte of Moringa oleifera. European Journal of Biological Research, 8, 157-67.
  2. Al-badi, R.S., Karunasinghe, T.G., Al-sadi, A.M., Al-mahmooli, I.H., & Velazhahan, R. (2020). In vitro antagonistic activity of endophytic fungi isolated from Shirazi Thyme (Zataria multiflora Boiss.) against Monosporascus cannonballus. Polish Journal of Microbiology, 69(3), 379-383. DOI: https://doi.org/10.33073/pjm-2020-029
  3. Amaresan, N., Jeyakumar, V., & Thajuddin, N. (2014). Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. International Journal of Biotechnology, 247-55.
  4. Araujo, W.L., Marcon, J., Maccheroni, W.J., Elsas, J.D.V., Vuurde, J.L.V., & Azevedo, J.L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 6, 4906-914. DOI: https://doi.org/10.1128/AEM.68.10.4906-4914.2002
  5. Bhagat, J., Kaur, A., Sharma, M., Saxena, A.K., & Chadha, B.S. (2012). Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World Journal of Microbiology and Biotechnology, 28(3), 963-71. DOI: https://doi.org/10.1007/s11274-011-0894-0
  6. Chen, X.Y., Qi, Y.D., Wei, J.H., Zhang, Z., Wang, D., Feng, J., & Gan, B. (2011). Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World Journal of Microbiology and Biotechnology, 27(3), 495-503. DOI: https://doi.org/10.1007/s11274-010-0480-x
  7. Gouda, S., Das, G., Sen, S.K., Shin, H.S. & Patra, J.K. (2016). Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Frontiers of Microbiology. 29(7), 1538. DOI: https://doi.org/10.3389/fmicb.2016.01538
  8. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., & Kloepper, J.W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895–14. DOI: https://doi.org/10.1139/m97-131
  9. Hassan, G.M., & Hemeda, N.F. (2016). In vitro assessment of Trichoderma asperellum isolated from plant rhizosphere and evaluation of their potential activity against some pathogenic fungi. Egyptian Journal of Genetics and Cytology, 5, 113-28. DOI: https://doi.org/10.21608/ejgc.2016.9701
  10. Kannangara, S., Ratna, D.R., & Ratna, J.D.L. (2017). Isolation, identification and characterization of Trichoderma species as a potential biocontrol agent against Ceratocystis paradoxa. The journal of Agricultural Sciences, 12(1), 51-62. DOI: https://doi.org/10.4038/jas.v12i1.8206
  11. Khaidem, A.D., Garima, P., Rawat, A.K.S., Sharma, G.D., & Piyush, P. (2017). The Endophytic symbiont -Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Frontiers in Microbiology, 8, 1897. DOI: https://doi.org/10.3389/fmicb.2017.01897
  12. Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., & Srivastava, R.C. (2012). Isolation and Characterization of Trichoderma spp. for Antagonistic Activity Against Root Rot and Foliar Pathogens. Indian Journal of Microbiology, 52(2), 137-44. DOI: https://doi.org/10.1007/s12088-011-0205-3
  13. Kusari, S., Lamshoft, M., & Spiteller, M. (2009). Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. Journal of Applied Microbiology, 107, 19-30. DOI: https://doi.org/10.1111/j.1365-2672.2009.04285.x
  14. Lane, D.J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, NY. 115-147.
  15. Li, X.L. & Yao, Y.J. (2005). Revision of the taxonomic position of the Phoenix 9 Mushroom. Mycotaxon. 91, 61–73.
  16. Liua, J.Y., Songa, Y.C., Zhanga, Z., Wanga, L., Guob, Z.J., Zoua, W.X., & Tana, R.X. (2004). Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. Journal of Biotechnology, 114, 279-87. DOI: https://doi.org/10.1016/j.jbiotec.2004.07.008
  17. Misra, N., Gupta, G., Prabhat, N., & Jha, P.N. (2012). Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. Journal of Basic Microbiology, 52, 1–10. DOI: https://doi.org/10.1002/jobm.201100257
  18. Moges, A.D., Belew, D., Admassu, B., Yesuf, M., Maina, S. & Ghimire, S.R. (2017). Frequent association of Colletotrichum species with citrus fruit and leaf spot disease symptoms and their genetic diversity in Ethiopia. Journal of Plant Pathology & Microbiology. 8(10). DOI: https://doi.org/10.4172/2157-7471.1000425
  19. Petrini, O. (1991). Fungal endophytes of tree leaves. in Microbial Ecology of Leaves eds. Andrews, J, Hirano S.S, (eds.), Spring-Verlag, New York pp. 179-197. DOI: https://doi.org/10.1007/978-1-4612-3168-4_9
  20. Ratanacherdchai, K., Wang, H.K., Lin, F.C. & Soytong, K. 2007. RAPD analysis of Colletotrichum species causing chilli anthracnose disease in Thailand. Journal of Agricultural Research and Technology. 3(2), 211-9.
  21. Saini, P., Gangwar, M., Kalia, A., Singh, N., & Narang, D. 2016. Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens. Journal of Applied Natural Sciences. 8(1), 416–422. DOI: https://doi.org/10.31018/jans.v8i1.809
  22. Savitha, M.J., & Sriram, S. (2015). Morphological and molecular identification of Trichoderma isolates with biocontrol potential against Phytophthora blight in red pepper. Pest Management in Horticultural Ecosystems, 21(2), 194-202.
  23. Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., & Chen, W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, USA, 109(16), 6241-6246. DOI: https://doi.org/10.1073/pnas.1207508109
  24. Singh, P., Sharma, A., Bordoloi, M., & Nandi, S.P. (2020). Molecular identification of endophytic fungi isolated from medicinal plant. Biointerface Research in Applied Chemistry, 10(5), 6436-6443. DOI: https://doi.org/10.33263/BRIAC105.64366443
  25. Singh, R.P., & Jha, P.N. (2015). Molecular identification and characterization of rhizospheric bacteria for plant growth promoting ability. International Journal of Current Biotechnology, 3(7), 12-18.
  26. Stackebrandt, E. & W. Liesack. (1993). Nucleic acids and classification. In M. Goodfellow and A.G. O'Donnell (ed.), Handbook of new bacterial systematics. Academic Press, London, England. 152-189.
  27. Uzair, B., Kausar, R., Bano, S.A., Fatima, S., Badshah, M., Habiba, U., & Fasim, F. (2018). Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa Divulging in vitro plant growth promoting characteristics. Biomed Research International, 1-7. DOI: https://doi.org/10.1155/2018/6147380
  28. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., editors. PCR protocols, a guide to methods and applications. San Diego, USA: Academic press. 315–322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  29. William, S., Feil, H., & Copeland, A. (2012). Bacterial genomic DNA isolation using CTAB. Sigma. 50, 6876.
  30. Yoo, J.J., & Eom, A.H. (2012). Molecular Identification of Endophytic Fungi Isolated from Needle Leaves of Conifers in Bohyeon Mountain, Korea. Mycobiology, 40(4), 231-235. DOI: https://doi.org/10.5941/MYCO.2012.40.4.231
  31. Zihad, S.M.N.K., Hasan, M.T., Sultana, M.S., Nath, S., Nahar, L., Rashid, M.A., Uddin, S.K., Sarker, S.D., & Shilpi, J.A. (2022). Isolation and characterization of antibacterial compounds from Aspergillus fumigatus: An endophytic fungus from a mangrove plant of the Sundarbans. Evidence-Based Complementary and Alternative Medicine, 1-10. DOI: https://doi.org/10.1155/2022/9600079