Main Article Content

Abstract

A field experiment was undertaken at College of Agriculture, Vellayani during June to December 2019, to assess the efficacy of liquid consortium biofertilizer, Plant Growth Promoting Rhizobacteria (PGPR) Mix - I in cassava and to examine the changes in soil chemical and biological properties with the application. The treatment combinations included four levels of biofertilizer [PGPR Mix - I liquid (L) @ 2 %, PGPR Mix - I liquid (L) @ 5 %, PGPR Mix - I powder (P) formulation @ 10g of 2 % mixture per plant, without biofertilizer] and three levels of nutrients, with 50: 50: 100 kg NPK/ha as the standard dose of nutrients (SDN), [50 % SDN, 75 % SDN, 100 % SDN]. The 4 × 3 factorial experiment was laid out in randomized block design with three replications. The results of the study revealed that the liquid biofertilizer consortium at 5 per cent + 75 percent SDN (37.5: 37.5: 75 kg NPK /ha) recorded significantly superior yield attributes in cassava and improved the soil organic C, available K status and microbial count.


 

Keywords

Biofertilizer Cassava microbial count PGPR soil properties yield attributes

Article Details

How to Cite
S, A. B., & Isaac, S. R. (2023). Yield attributes of Cassava (Manihot esculenta Crantz) and soil properties in Southern Laterites, Kerala as influenced by consortium biofertilizers. Environment Conservation Journal, 24(4), 45–51. https://doi.org/10.36953/ECJ.15922504

References

  1. Arotupin, D. J. & Akinyosoye, F. A. (2008). Microbiological and physicochemical characteristics of cassava cultivated soils. Research Journal of Microbiology, 3(1), 41-46. DOI: https://doi.org/10.3923/jm.2008.41.46
  2. Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140. DOI: https://doi.org/10.3390/su13031140
  3. Bolan, N. S., Curri, L. D. & Baskaran, S. (1996). Assessment of the influence of phosphate fertilizers on microbial activity in pasture soil. Biology and Fertility of Soils, 21, 284-292. DOI: https://doi.org/10.1007/BF00334905
  4. Brar, S. K., Sarma, S. J. & Chaabouni, E. (2012). Shelf-life of biofertilizers: An accord between formulations and genetics. Journal of Biofertilizers and Biopesticides, 3(5), 32- 38.
  5. Cochran, W. G. & Cox, G. M. (1992). Experimental Designs. Asia Publishing House, Bombay.
  6. Damodaran, T., Bagyaraj, D. J. & Revanna, A. (2016). Effect of chemical fertilizers on the beneficial soil microorganisms. Fertilizer Environmental News, 2(2), 10-11.
  7. Dhanya, T., (2011). Production technology for organic sweet potato. M.Sc.(Ag) thesis submitted to Kerala Agricultural University, Thrissur, Kerala.
  8. Dotaniya, M. L. & Meena, V. D. (2015). Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proceedings of the National Academy of Sciences, India, 85, 1-12. DOI: https://doi.org/10.1007/s40011-013-0297-0
  9. Ezui, K. S., (2017). Understanding the productivity of cassava in West Africa. Ph.D. thesis submitted to Wageningen University.
  10. FIB. (2022). Farm Guide. (2022). Farm Information Bureau, Agriculture Development and Farmers’ Welfare Department, Government of Kerala, Kowdiar, Thiruvananthapuram.
  11. Gopal, S. K., (2018). Liquid Formulation of Azospirillum sp. and Phosphate Solubilizing Bacteria (PSB) performed better than carrier based formulations on the growth of Amaranthus sp. under field conditions. Research Journal of Agricultural Science, 9,316–321.
  12. Gopi, G. K., Meenakumari, K. S., Anith, K. N., Nysanth, N. S. & Subha, P. (2020). Application of liquid formulation of a mixture of plant growth promoting rhizobacteria helps reduce the use of chemical fertilizers in Amaranthus (Amaranthus tricolor L.). Rhizosphere, 15, 1002-1012. DOI: https://doi.org/10.1016/j.rhisph.2020.100212
  13. Gopi, G., (2018). Standardisation of liquid formulation of PGPR Mix 1 and its evaluation for plant growth promotion in Amaranthus (Amaranthus tricolor L.). M.Sc.(Ag) thesis submitted to Kerala Agricultural University, Thrissur, Kerala.
  14. Hoe, P. C. K. & Rahim, K. A. (2010). Multifunctional liquid biofertilizer as an innovative agronomic input for modern agriculture. In: Proceedings of the Research and Development Seminar, Nuclear Malaysia, Kajang, Selangor.
  15. Howeler, R. H. (2001). Cassava mineral nutrition and fertilization. In: Hillocks, R. J., Tresh, J. M. and Bellotti, A. C. (eds), Cassava: Biology, Production and Utilization. CABI Publishing, Oxon, UK and New York, USA. DOI: https://doi.org/10.1079/9780851995243.0115
  16. Jayapal, A. (2012). Production technology for organic coleus. M.Sc.(Ag) thesis submitted to Kerala Agricultural University, Thrissur, Kerala.
  17. Khipla, N., Gosal, S. K. & Gill, R. I. S. (2017). Influence of biofertilizers and inorganic fertilizers on soil microbial population and enzyme activities in rhizosphere of poplar. Chemical Science Review and Letters, 6(24), 2324-2331.
  18. Krishan, C., Greep, S. & Sreevastha, R. S. H. (2005). Liquid biofertilizers- Solution for longer shelf-life. Spice India, 32, 29-32.
  19. KSPB (Kerala State Planning Board) (2013). Soil Fertility Assessment and Information for enhancing Crop Productivity in Kerala. Kerala State planning Board, Thiruvananthapuram, Kerala.
  20. Lakshmi, A., Sireesha, T., Sreelatha, M. & Bharatha, L. P. (2019). Jamuna Comparative efficacy of liquid biofertilizers over carrier based formulations in sugarcane plant – ratoon sequence. International Journal of Advanced Research in Biological Sciences, 9(4), 298-301.
  21. Maheswari, N. U. & Kalaiyarasi, M. (2015). Comparative study of liquid biofertilizer and carrier based biofertilizer on green leafy vegetables. International Journal of Pharmaceutical Sciences Review and Research, 33(1), 229-232.
  22. Maheswari, U. N. & Elakkiya, T. (2014). Effect of liquid biofertilizers on growth and yield of Vigna mungo L. International Journal of Pharmaceutical Sciences Review and Research, 29(2), 42-45.
  23. Meenakumari, K. S., Sivaprasad, P. & Geegi, M. T. (2008). Role of phosphate solubilizing microorganisms in P dynamics of soil system. In: Sivaprasad, P. and Meenakumari, K. S. (eds.), Microbial Inoculant Technology for Sustainable Farming. Kalyani publishers, Ludhiana, India.
  24. Radhakrishnan, A.S., Suja, G. & Sreekumar, J. (2022). How sustainable is organic management in cassava? Evidences from yield, soil quality, energetics and economics in the humid tropics of South India. Scientia Horticulturae, 293, 110723. DOI: https://doi.org/10.1016/j.scienta.2021.110723
  25. Radhakrishnan, S. A. R, Suja, G. & Anil, A. T. (2013). Organic vs conventional management in cassava: growth dynamics, yield and soil properties. Journal of Root Crops, 39(2), 93-99.
  26. Singh, J. S. (2013). Plant growth promoting rhizobacteria: Potential microbes for sustainable agriculture. Resonance, 18(3), 275-281. DOI: https://doi.org/10.1007/s12045-013-0038-y
  27. Suja, S.P., Hegde, V., Makeshkumar, T. & Anjana Devi, I. P. (2014). Screening of rhizobacteria associated with cassava for plant growth promotion and biocontrol potential. Journal of. Root Crops, 40(1), 1-8.
  28. Tuomela, M., Vikman, M., Hatakka, A. & Itävaara, M. (2000). Biodegradation of lignin in a compost environment: A review. Bioresource Technology, 72(2), 169- 183. DOI: https://doi.org/10.1016/S0960-8524(99)00104-2
  29. Vendan, R. & Thangaraju, M. (2006). Development and standardization of liquid formulation for Azospirillum bioinoculant. Indian Journal of Microbiology, 46, 379– 387.