Main Article Content

Abstract

Bakanae disease caused by Fusarium fujikuroi of basmati rice causes huge economic losses varying with varieties produced, with a frequency of 3.0-95.4%. The Fusarium spp. associated with bakanae disease produce fumonisins, a group of structurally similar sphingosine analogue mycotoxins, among which Fumonisin B1 is the most prevalent and active (FB1). The worst harm to both people and animal wellbeing is created by fumonisins, which infect feed and food sources. IARC, a global organization dedicated to cancer research, classified FB1 as a potential causing human cancer (Group 2B). Altogether 26 strains of Fusarium spp. from bakanae infected  samples of various popular basmati rice varieties collected from Hisar, Jind, Fatehabad, Bhiwani, Sirsa, Panipat, Sonipat, Karnal, Yamunanagar, Kaithal and Kurukshetra (eleven) districts of Haryana state. Two specific primers namely VERTF and polyketide synthase (PKS) (involved in fumonisin biosynthesis) FUM (rp 32 and rp 33) were utilized in this investigation to differentiation between fumonisin-producing and non-producing strains employing PCR technique. Twenty-two strains were significant for the VERTF primer and showed the capacity to generate fumonisin, while four isolates evaluated negative for both primers. The FUM specific primer displayed positive respose only in nine strains and rest were negative. The present study provides a rapid and specific method that helped in accurate differentiation between fumonisin-producing and non-producing strains.


 

Keywords

Basmati Haryana Mycotoxins PCR VERTF

Article Details

How to Cite
Singh, V., Ashwani Kumar, Promil Kapoor, & Mahaveer Singh Bochalya. (2023). Detection of fumonisin among different strains of Fusarium spp. associated with bakanae disease of rice (Oryza sativa L.) using molecular markers. Environment Conservation Journal, 24(4), 9–15. https://doi.org/10.36953/ECJ.15822520

References

  1. Asmaul, H., Asaduzzaman, M. M.,& Nor, N. M. I. M. (2021). Rice bakanae disease: an emerging threat to rice production in Bangladesh. Asian Journal of Medical and Biological Research, 6(4), 608-610. DOI: https://doi.org/10.3329/ajmbr.v6i4.51224
  2. Choi, J. H., Lee, S., Nah, J. Y., Kim, H. K., Paek, J. S., Lee, S., & Lee, T. (2018). Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. International Journal of Food Microbiology, 267, 62-69. DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.12.006
  3. Deepa, N., Nagaraja, H., & Sreenivasa, M. Y. (2016). Prevalence of fumonisin producing Fusarium verticillioides associated with cereals grown in Karnataka (India). Food Science and Human Wellness, 5(3), 156-162. DOI: https://doi.org/10.1016/j.fshw.2016.07.001
  4. Elsharnouby, D. E., El-Denary, M. E., Abdel Khalek, A. F., Gabr, W. E.,& Dora, S. A. (2015). Detection offumonisin producing strains ofFusarium moniliformecausing rice bakanae disease using molecular markers. Journal of agricultural Chemistry and Biotechology, 6(8), 293-300. DOI: https://doi.org/10.21608/jacb.2015.48410
  5. Hinojo, M. J., Medina, A., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Jimenez, M., & Mateo, R. (2006). Fumonisin production in rice cultures of Fusarium verticillioides under different incubation conditions using an optimized analytical method. Food Microbiology, 23(2), 119-127. DOI: https://doi.org/10.1016/j.fm.2005.03.006
  6. Hansen, H.C. (1926). A simple method of obtained single spore culture. Science, 64, 384- 1959. DOI: https://doi.org/10.1126/science.64.1659.384.a
  7. Hori, S. (1898). Some observations on ‘Bakanae’disease of the rice plant. Mem Agric Res Sta (Tokyo), 12, 110-119.
  8. Ito, S. and Kimura (1931). Studies on the bakanae disease of the rice plant. Rep. Hokkaido Agric. Exp. Stn., 27, 1-95.
  9. Jeon, Y. A., Yu, S. H., Lee, Y. Y., Park, H. J., Lee, S., Sung, J. S., ... & Lee, H. S. (2013). Incidence, molecular characteristics and pathogenicity of Gibberella fujikuroi species complex associated with rice seeds from Asian countries. Mycobiology, 41(4), 225-233. DOI: https://doi.org/10.5941/MYCO.2013.41.4.225
  10. Jurado, M., Marín, P., Callejas, C., Moretti, A., Vazquez, C.,& González-Jaén, M. T. (2010). Genetic variability and fumonisin production by Fusarium proliferatum. Food microbiology, 27(1), 50-57. DOI: https://doi.org/10.1016/j.fm.2009.08.001
  11. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames, IA: Blackwell Publishing. DOI: https://doi.org/10.1002/9780470278376
  12. Li, K., Yu, S., Yu, D., Lin, H., Liu, N.,& Wu, A. (2022). Biodegradation of Fumonisins by the Consecutive Action of a Fusion Enzyme. Toxins, 14(4), 266. DOI: https://doi.org/10.3390/toxins14040266
  13. Maheshwar, P. K., Moharram, S. A., & Janardhana, G. R. (2009). Detection of fumonisin producing Fusarium verticillioides in paddy (Oryza sativa L.) using polymerase chain reaction (PCR). Brazilian Journal of Microbiology, 40, 134-138. DOI: https://doi.org/10.1590/S1517-83822009000100023
  14. Moretti, A., Mulè, G., Susca, A., González-Jaén, M. T., & Logrieco, A. (2004). Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana.European Journal of Plant Pathology,110, 601-609. DOI: https://doi.org/10.1007/978-1-4020-2285-2_14
  15. Murray, M. G., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic acids research, 8(19), 4321-4326. DOI: https://doi.org/10.1093/nar/8.19.4321
  16. Nayak, S., Dhua, U., Samanta, S., & Chhotaray, A. (2014). Molecular detection and genetic characterisation of fumonisin producing fusarium isolates from rice cultivars. International Journal of Agriculture, Environment and Biotechnology, 7(4), 695. DOI: https://doi.org/10.5958/2230-732X.2014.01377.1
  17. Nayak, S., Dhua, U., Chhotaray, A., Samanta, S., & Sengupta, C. (2018). Genetic diversity of fumonisin producing Fusarium isolates from rice using PCR-RFLP of IGS-rDNA region. Biodiversitas Journal of Biological Diversity, 19(2), 571-576. DOI: https://doi.org/10.13057/biodiv/d190233
  18. Mackay, N., Marley, E., Leeman, D., Poplawski, C., & Donnelly, C. (2022). Analysis of Aflatoxins, Fumonisins, Deoxynivalenol, Ochratoxin A, Zearalenone, HT-2, and T-2 Toxins in Animal Feed by LC–MS/MS Using Cleanup with a Multi-Antibody Immunoaffinity Column. Journal of AOAC International. DOI: https://doi.org/10.1093/jaoacint/qsac035
  19. Patino, B., Mirete, S., González-Jaén, M. T., Mule, G., Rodriguez, M. T., & Vazquez, C. (2004). PCR detection assay of fumonisin-producing Fusarium verticillioides strains. Journal of Food Protection, 67(6), 1278-1283. DOI: https://doi.org/10.4315/0362-028X-67.6.1278
  20. Sawada, K. (1917). Beitrage über Formosas-Pilze no. 14. Trans Nat Hist Soc Formosa, 31, 31-133.
  21. Sreenivasa, M. Y., Gonzalez Jaen, M. T., Sharmila Dass, R., Charith Raj, A. P., & Janardhana, G. R. (2008). A PCR-based assay for the detection and differentiation of potential fumonisin-producing Fusarium verticillioides isolated from Indian maize kernels. Food Biotechnology, 22(2), 160-170. DOI: https://doi.org/10.1080/08905430802043206
  22. Sun, S., & Snyder, W. (1981).The bakanae disease of the rice plant. In: Fusarium: Diseases, Biology and Taxonomy (pp: 104-113) (Nelson PE, TA Toussoun and R.J Cook, Eds). The Pennsylvania State University Press, University Park, PA.
  23. Tyska, D., Mallmann, A. O., Vidal, J. K., Almeida, C. A. A. D., Gressler, L. T., & Mallmann, C. A. (2021). Multivariate method for prediction of fumonisins B1 and B2 and zearalenone in Brazilian maize using Near Infrared Spectroscopy (NIR). PloS one, 16(1), e0244957. DOI: https://doi.org/10.1371/journal.pone.0244957
  24. Wangia, R. N., & Nishimwe, K. (2020). Molecular toxicology and carcinogenesis of fumonisins: A review. Journal of Environmental Science and Health, Part C, 39(1), 44-67. DOI: https://doi.org/10.1080/26896583.2020.1867449