Main Article Content


Major part of the aesthetics and beauty of idols, textiles, paper, paintings industries, etc. finds its roots in the use of colours (azo compound). These synthetic dyes can not degrade easily by physical and chemical means and are toxic for the environment and animals including humans. Even if they get degraded, it becomes difficult to get rid of the secondary toxic products.  Microbes especially bacteria can be used which results cheap, eco friendly and complete degradation of azo dye products without production of any secondary toxic products (or secondary products with way lesser toxicity). Also, it requires no new chemical to be added (in an attempt to degrade azo dye) in an already polluted environment, as the bacterial enzymes would do the job without requiring any other added chemicals. This review article discusses the use of bacteria for azo dye degradation, the bacterial enzymes such as laccase etc. that degrade azo dye and how they work to decolourise the dyes, the common genetic elements found in the different bacteria that can degrade azo dye. This article also includes information on future prospects and some genetically modified organism (GMO) that are being/ (can be) brought to use for dye degradation and pollution reduction.


Synthetic dyes Idols Azo dye Toxicity Laccase GMO

Article Details

How to Cite
Upadhyay, M., Mondal , A., & Saha, B. (2023). Azo dye degrading bacteria and their mechanism: A review . Environment Conservation Journal, 24(3), 274–282.


  1. Ang, T. N., Ngoh, G. C., Chua, A. S. M., & Lee, M. G. (2012). Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnology for biofuels, 5(1), 1-10. DOI:
  2. Asad, S., Amoozegar, M. A., Pourbabaee, A., Sarbolouki, M. N., &Dastgheib, S. M. M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource technology, 98(11), 2082-2088. DOI:
  3. Bains, J., Capalash, N., & Sharma, P. (2003). Laccase from a non-melanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnology Letters, 25, 1155-1159. DOI:
  4. Bayoumi, R. A., Musa, S. M., Bahobil, A. S., Louboudy, S. S., & El-Sakawey, T. A. (2010). Biodecolorization and biodegradation of azo dyes by some bacterial isolates. Journal Of Applied Environmental and Biological Science, 1(1), 1-25.
  5. Bhutiani, R., Ahamad, F., & Ruhela, M. (2021). Effect of composition and depth of filter-bed on the efficiency of Sand-intermittent-filter treating the Industrial wastewater at Haridwar, India. Journal of Applied and Natural Science, 13(1), 88-94. DOI:
  6. Bhutiani, R., Tiwari, R. C., Chauhan, P., Ahamad, F., Sharma, V. B., Tyagi, I., & Singh, P. (2022). Potential of Cassia fistula pod-based absorbent in remediating water pollutants: An analytical study. In Sustainable Materials for Sensing and Remediation of Noxious Pollutants (pp. 261-272). Elsevier. DOI:
  7. Bell, J., Plumb, J. J., Buckley, C. A., & Stuckey, D. C. (2000). Treatment and decolorization of dyes in an anaerobic baffled reactor. Journal of Environmental Engineering, 126(11), 1026-1032. DOI:
  8. Boonyakamol, A., Imai, T., Chairattanamanokorn, P., Higuchi, T., Sekine, M., &Ukita, M. (2009). Reactive Blue 4 decolorization under mesophilic and thermophilic anaerobic treatments. Applied biochemistry and biotechnology, 152, 405-417. DOI:
  9. Chandra, R., &Chowdhary, P. (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science: Processes & Impacts, 17(2), 326-342. DOI:
  10. Chen, C. H., Chang, C. F., Ho, C. H., Tsai, T. L., & Liu, S. M. (2008). Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere, 72(11), 1712-1720. DOI:
  11. Chivukula, M., &Renganathan, V. (1995). Phenolic azo dye oxidation by laccase from Pyriculariaoryzae. Applied and Environmental Microbiology, 61(12), 4374-4377. DOI:
  12. Dixit, S., & Garg, S. (2019). Development of an efficient recombinant bacterium and its application in the degradation of environmentally hazardous azo dyes. International Journal of Environmental Science and Technology, 16, 7137-7146. DOI:
  13. Du, L. N., Li, G., Zhao, Y. H., Xu, H. K., Wang, Y., Zhou, Y., & Wang, L. (2015). Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: characteristics and partial mechanism. International Biodeterioration& Biodegradation, 105, 66-72. DOI:
  14. Garg, S. K., Tripathi, M., Singh, S. K., & Tiwari, J. K. (2012). Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. International biodeterioration& biodegradation, 74, 24-35. DOI:
  15. Gurulakshmi, M., Sudarmani, D. N. P., &Venba, R. (2008). Biodegradation of leather acid dye by Bacillus subtilis. Advanced Biotech, 7, 12-19.
  16. Hadibarata, T., Yusoff, A. R. M., Aris, A., Hidayat, T., &Kristanti, R. A. (2012). Decolorization of azo, triphenylmethane and anthraquinone dyes by laccase of a newly isolated Armillaria sp. F022. Water, Air, & Soil Pollution, 223, 1045-1054. DOI:
  17. Haley, T. J. (1975). Benzidine revisited: a review of the literature and problems associated with the use of benzidine and its congeners. Clinical toxicology, 8(1), 13-42. DOI:
  18. He, F., Hu, W., & Li, Y. (2004). Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere, 57(4), 293-301. DOI:
  19. Houk, J.M., Doa, A., Dezube, M., and Rovinski, J.M. (1991). Evaluation of dyes submitted under the toxic substances control act new chemical programme. In: Color Chemistry. Elsevier Science Publishers Ltd., London, pp. 135 150.
  20. Jadhav, U. U., Dawkar, V. V., Ghodake, G. S., &Govindwar, S. P. (2008). Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS. Journal of Hazardous Materials, 158(2-3), 507-516. DOI:
  21. Jadhav, S. U., Kalme, S. D., &Govindwar, S. P. (2008). Biodegradation of methyl red by Galactomycesgeotrichum MTCC 1360. International Biodeterioration& Biodegradation, 62(2), 135-142. DOI:
  22. Jin, R. F., Zhou, J. T., Zhang, A. L., & Wang, J. (2008). Bioaugmentation of the decolorization rate of acid red GR by genetically engineered microorganism Escherichia coli JM109 (pGEX-AZR). World Journal of Microbiology and Biotechnology, 24, 23-29. DOI:
  23. Jin, R., Yang, H., Zhang, A., Wang, J., & Liu, G. (2009). Bioaugmentation on decolorization of CI Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). Journal of hazardous materials, 163(2-3), 1123-1128. DOI:
  24. Kagalkar, A. N., Jagtap, U. B., Jadhav, J. P., Govindwar, S. P., &Bapat, V. A. (2010). Studies on phytoremediation potentiality of Typhoniumflagelliforme for the degradation of Brilliant Blue R. Planta, 232, 271-285. DOI:
  25. Kandelbauer, A.; Guebitz, G.M. (2005). Bioremediation for the Decolorization of Textile Dyes—A Review. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds), Environmental Chemistry (269–288). Springer: Berlin/Heidelberg, Germany. (ISBN 978-3-540-22860-8) DOI:
  26. Khadijah, O., Lee, K. K., &MohdFaiz, F. A. (2009). Isolation, screening and development of local bacterial consortia with azo dyes decolourising capability. Malaysian Journal of Microbiology, 5, 25-32. DOI:
  27. Khan, S., & Joshi, N. (2020). Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products. Environmental Engineering Research, 25(4), 561-570. DOI:
  28. Lin, Y. H., &Leu, J. Y. (2008). Kinetics of reactive azo-dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochemical Engineering Journal, 39(3), 457-467. DOI:
  29. Mani, S., &Bharagava, R. N. (2016,a). Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Reviews of Environmental Contamination and Toxicology Volume 237, 71-104. DOI:
  30. Mani, S. and Bharagava, R.N. (2016,b). Microbial degradation and decolorization of dyes from Textile industry wastewater. In: Bharagava, R.N. and Saxena, G. (1stEd) Bioremediation Of Industrial Pollutants. Write & Print Publications New Delhi, 110 015. (ISBN: 978-93-84649-60-9).
  31. Moharikar, A., Purohit, H. J., & Kumar, R. (2005). Microbial population dynamics at effluent treatment plants. Journal of Environmental Monitoring, 7(6), 552-558. DOI:
  32. Naik, C., & Singh, C. R. (2012). Isolation screening and development of Bacillus sps with decolorization and degradation capabilities towards reactive dyes and textile effluents. Recent Research in Science and Technology, 4, 1–5.
  33. Neifar, M., Chouchane, H., Mahjoubi, M., Jaouani, A., &Cherif, A. (2016). Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech, 6, 1-9. DOI:
  34. Olukanni, O. D., Osuntoki, A. A., &Gbenle, G. O. (2006). Textile effluent biodegradation potentials of textile effluent-adapted and non-adapted bacteria. African Journal of Biotechnology, 5(20), 1980-1984.
  35. Olukanni, O. D., Osuntoki, A. A., Kalyani, D. C., Gbenle, G. O., &Govindwar, S. P. (2010). Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. Journal of Hazardous Materials, 184(1-3), 290-298. DOI:
  36. Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L., & Crawford, R. L. (1992). Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58(11), 3605-3613. DOI:
  37. Paszczynski, A., Pasti, M. B., Goszczynski, S., Crawford, D. L., & Crawford, R. L. (1991). New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaetechrysosporium. Enzyme and Microbial Technology, 13(5), 378-384. DOI:
  38. Puvaneswari, N., Muthukrishnan, J., &Gunasekaran, P. (2006). Toxicity assessment and microbial degradation of azo dyes. Indian journal of experimental biology, 44(8), 618–626.
  39. Ruhela, M., Jena, B. K., Bhardawaj, S., Bhutiani, R., & Ahamad, F. (2021). Efficiency of Pistia stratiotes in the treatment of municipal solid waste leachate in an upwards flow constructed wetland system. Ecology Environment & Conservation 27 (February Suppl. Issue): 2021; pp. (S235-S244).
  40. Sahasrabudhe, M. M., &Pathade, G. R. (2011). Biodegradation of sulphonated azo dye CI reactive orange 16 by Enterococcus faecalis strain YZ 66. European Journal of Experimental Biology, 1(1), 163-173.
  41. Sari, I. P., &Simarani, K. (2019). Decolorization of selected azo dye by Lysinibacillus fusiformis W1B6: Biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorption Science & Technology, 37(5-6), 492-508. DOI:
  42. Saxena, G., Kishor, R., Saratale, G.D., Bharagava, R.N., (2019). Genetically Modified Organisms (GMOs) and their Potential in Environmental Management: Constraints prospects, and Challenges. In: Bharagava, R., Saxena, G. (Eds.). Bioremediation of Industrial Waste for Environmental Safety (1-19). Springer, Singapore. DOI:
  43. Shannon, C.E. and Weaver, W. (1949). The Mathematical Theory of Communication. Urbana, IL: The University of Illinois Press, 1-117.
  44. Sheikhi, F., RoayaeiArdakani, M., Enayatizamir, N., & Rodriguez-Couto, S. (2012). The determination of assay for laccase of Bacillus subtilis WPI with two classes of chemical compounds as substrates. Indian journal of microbiology, 52, 701-707. DOI:
  45. Solomon, E. I., Augustine, A. J., & Yoon, J. (2008). O 2 Reduction to H2O by the multicopper oxidases. Dalton Transactions, (30), 3921-3932. DOI:
  46. Solomon, E. I., Sundaram, U. M., &Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical reviews, 96(7), 2563-2606. DOI:
  47. Sondhi, S., Sharma, P., Saini, S., Puri, N., & Gupta, N. (2014). Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PloS one, 9(5), e96951. DOI:
  48. Srinivasan, S., &Sadasivam, S. K. (2018). Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. Journal of water process engineering, 22, 180-191. DOI:
  49. Sudha, M., Bakiyaraj, G., Saranya, A., Sivakumar, N., &Selvakumar, G. (2018). Prospective assessment of the Enterobacteraerogenes PP002 in decolorization and degradation of azo dyes DB 71 and DG 28. Journal of environmental chemical engineering, 6(1), 95-109. DOI:
  50. Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Applied microbiology and biotechnology, 56, 69-80. DOI:
  51. Tian, Y. S., Xu, H., Peng, R. H., Yao, Q. H., & Wang, R. T. (2014). Heterologous expression and characterization of laccase 2 from Coprinopsiscinerea capable of decolourizing different recalcitrant dyes. Biotechnology & Biotechnological Equipment, 28(2), 248-258. DOI:
  52. Vijaykumar, M. H., Vaishampayan, P. A., Shouche, Y. S., &Karegoudar, T. B. (2007). Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1. Enzyme and Microbial Technology, 40(2), 204-211. DOI:
  53. Zimmermann, T., Gasser, F., Kulla, H. G., &Leisinger, T. (1984). Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Archives of Microbiology, 138, 37-43. DOI:
  54. Zimmermann, T., Kulla, H. G., &Leisinger, T. (1982). Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. European Journal of Biochemistry, 129(1), 197-203 DOI: