Main Article Content


Plants are highly sensitive organisms and can indeed benefit from specific sound signals in multi-layered processes. Scientific evidences have shown the potential applications of sound wave treatment in plant biology. However, there are some limitations to sound wave treatment that must be overcome. We still do not understand how do plants initially perceive and recognize sound signals, which is very critical to maximize the effectiveness of the use of sound treatment from practical viewpoint. Proper setup of sound treatment equipment and detailed understanding and evaluation of the effects of selected frequencies and intensities along with sound exposure times are also very crucial during sound treatment. More experimental studies with different models need to be done in a multidisciplinary approach toward establishing suitable mechanism for sound treatment application in agriculture production. The aim of this paper is to provide an overview of findings associated with potential effects of audible sound waves including music on different biological, physiological and biochemical processes in plants.


acoustic frequency technology frequency germination music plant growth Sound wave

Article Details

How to Cite
Das, M. (2023). Potential effects of audible sound signals including music on plants: A new trigger . Environment Conservation Journal, 24(3), 296–304.


  1. Abhang, P., Manasi, P., & Pramod, M. (2015). Beneficial effects of Agnihotra on environment and agriculture. International Journal of Agricultural Science and Research, 5(2),111-120
  2. Altuntas, O., & Ozkurt, H. (2019). The assessment of tomato fruit quality parameters under different sound waves. Journal of food science and technology, 56(4), 2186-2194. DOI:
  3. Appel, H. M., & Cocroft, R. B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175(4), 1257-1266. DOI:
  4. Bose, J. C. (1902): Response in the Living and Non-living. Longmans, Green, and Company, London, New York & Bombay.
  5. Bose, J. C. (1926). The nervous mechanism of plants. Longmans, Green, and Company, London, New York & Bombay. DOI:
  6. Cai, W., Dunford, N. T., Wang, N., Zhu, S., & He, H. (2016). Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity. Bioresource technology, 202, 226-230. DOI:
  7. Cai, W., He, H., Zhu, S., & Wang, N. (2014). Biological effect of audible sound control on mung bean (Vigna radiate) sprout. BioMed research international, 2014. DOI:
  8. Chatterjee, J., Jalan, A., & Singh, A. (2013). Effect of sound on plant growth. Asian journal of plant science and research, 3(4), 28-30.
  9. Chivukula, V., & Ramaswamy, S. (2014). Effect of different types of music on Rosa chinensis plants. International journal of environmental science and development, 5(5), 431. DOI:
  10. Choi, B., Ghosh, R., Gururani, M. A., Shanmugam, G., Jeon, J., Kim, J., & Bae, H. (2017). Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Scientific Reports, 7(1), 1-14. DOI:
  11. Chowdhury, A. R., & Gupta, A. (2015). Effect of music on plants–an overview. International journal of integrative sciences, innovation and technology, 4(6), 30-34.
  12. Chuanren, D., Bochu, W., Wanqian, L., Jing, C., Jie, L., & Huan, Z. (2004). Effect of chemical and physical factors to improve the germination rate of Echinacea angustifolia seeds. Colloids and Surfaces B: Biointerfaces, 37(3-4), 101-105. DOI:
  13. Coghlan, A. (1994). Good vibrations give plants excitations. New Scientist, 28.
  14. Collins, M. E., & Foreman, J. E. (2001). The effect of sound on the growth of plants.Canadian Acoustics, 29(2), 3-10.
  15. Creath, K., & Schwartz, G. E. (2004). Measuring effects of music, noise, and healing energy using a seed germination bioassay. The Journal of Alternative & Complementary Medicine, 10(1), 113-122. DOI:
  16. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: emergence of a core signaling network. Annual review of plant biology, 61,651-679 DOI:
  17. Das, M., & Ghosh, D. (2022) Quantitative effect of musical sound on seed germination kinetics in Pisum sativum. Ecology. Environment. & Conservation, 28 (1), 357-361. DOI:
  18. De Luca, P. A., & Vallejo-Marin, M. (2013). What's the ‘buzz’about? The ecology and evolutionary significance of buzz-pollination. Current opinion in plant biology, 16(4), 429-435. DOI:
  19. Ekici, N., Dane, F., Mamedova, L., Metin, I., & Huseyinov, M. (2007). The effects of different musical elements on root growth and mitosis in onion (Allium cepa) root apical meristem (musical and biological experimental study). Asian Journal of Plant Sciences, 6(2), 369-373. DOI:
  20. Evans, P. T., & Malmberg, R. L. (1989). Do polyamines have roles in plant development?. Annual review of plant biology, 40(1), 235-269. DOI:
  21. Fan, R., Zhou, Q., & Zhao, D. (2010). Effect on changes of chlorophyll fluorescence in cucumber by application of sound frequency control technology. Acta Agriculturae Boreali-occidentalis Sinica, 19(1), 194-197.
  22. Gagliano, M., Mancuso, S., & Robert, D. (2012). Towards understanding plant bioacoustics. Trends in plant science, 17(6), 323-325. DOI:
  23. Ghosh, R., Mishra, R. C., Choi, B., Kwon, Y. S., Bae, D. W., Park, S. C., & Bae, H. (2016). Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Scientific reports, 6(1), 1-17. DOI:
  24. Hicks, C. (1963). Growing corn to music. Popular Mechanics, 183, 118-121.
  25. Hou, T. Z., & Mooneyham, R. E. (1999). Applied Studies of Plant Meridian System I. The Effect of Agri-Wave Technology on Yield and Quality of Tomato. The American journal of Chinese medicine, 27(01), 1-10. DOI:
  26. Hou, T. Z., & Mooneyham, R. E. (1999). Applied Studies of the Plant Meridian System II. Agri-wave Technology Increases the Yield and Quality of Spinach and Lettuce and Enhances the Disease Resistant Properties of Spinach. The American journal of Chinese medicine, 27(02), 131-141. DOI:
  27. Hou, T., Li, B., Teng, G., Qi, L., & Hou, K. (2010). Research and application progress of plant acoustic frequency technology. Journal of China Agricultural University, 15(1), 106-110.
  28. Hou, T., Li, B., Teng, G., Zhou, Q., Xiao, Y., & Qi, L. (2009). Application of acoustic frequency technology to protected vegetable production. Transactions of the Chinese Society of Agricultural Engineering, 25(2), 156-160.
  29. Hou, T., Li, B., Wang, M., Huang, W., Teng, G., Zhou, Q., & Li, Y. (2010). Influence of acoustic frequency technology on cotton production. Transactions of the Chinese Society of Agricultural Engineering, 26(6), 170-174.
  30. Huang, J., & Jiang, S. (2011). Effect of six different acoustic frequencies on growth of cowpea (Vigna unguiculata) during its seedling stage. Agricultural Science & Technology-Hunan, 12(6), 847-851.
  31. Jeong, M. J., Cho, J. I., Park, S. H., Kim, K. H., Lee, S. K., Kwon, T. R., & Siddiqui, Z. S. (2014). Sound frequencies induce drought tolerance in rice plant. Pakistan Journal of Botany, 46, 2015-2020.
  32. Jeong, M. J., Shim, C. K., Lee, J. O., Kwon, H. B., Kim, Y. H., Lee, S. K., & Park, S. C. (2008). Plant gene responses to frequency-specific sound signals. Molecular breeding, 21(2), 217-226. DOI:
  33. Jia, Y., Wang, B. C., Wang, X. J., Wang, D. H., Duan, C. R., Toyama, Y., & Sakanishi, A. (2003). Effect of sound wave on the metabolism of chrysanthemum roots. Colloids and Surfaces B:Biointerfaces, 29(2-3), 115-118. DOI:
  34. Jiang, S., & Huang, J. (2012). Effects of music acoustic frequency on greenhouse vegetable. Journal of Zhejiang University of Science and Technology, 24, 287-293.
  35. Jiang, S., Huang, J., Han, X., & Zeng, X. (2011). Influence of audio frequency mixing of music and cricket voice on growth of edible mushrooms. Transactions of the Chinese Society of Agricultural Engineering, 27(6), 300-305.
  36. Johnson, K. A., Sistrunk, M. L., Polisensky, D. H., & Braam, J. (1998). Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2. Plant Physiology, 116(2), 643-649. DOI:
  37. Karnick, C. R. (1983). Effect of mantras on human beings and plants. Ancient Science Life, 2(3), 141-147.
  38. Keli, S., Baoshu, X., Guoyou, C., & Ziwei, S. (1999). The effects of alternative stress on the thermodymical properties of cultured tobacco cells. Shengwu Wuli Xuebao, 15(3), 579-583.
  39. Kim, J. Y., Ahn, H. R., Kim, S. T., Min, C. W., Lee, S. I., Kim, J. A., & Jeong, M. J. (2016). Sound wave affects the expression of ethylene biosynthesis-related genes through control of transcription factors RIN and HB-1. Plant Biotechnology Reports, 10(6), 437-445. DOI:
  40. Kim, J. Y., Lee, J. S., Kwon, T. R., Lee, S. I., Kim, J. A., Lee, G. M.,& Jeong, M. J. (2015). Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Biology and Technology, 110, 43-50. DOI:
  41. Klein, R. M., & Edsall, P. C. (1965). On the reported effects of sound on the growth of plants. Bioscience, 15(2), 125-126. DOI:
  42. Kwon, Y. S., Jeong, M. J., Cha, J., Jeong, S. W., Park, S. C., Shin, S. C., & Bae, D. W. (2012). Comparative proteomic analysis of plant responses to sound waves in Arabidopsis. Journal of Plant Biotechnology, 39(4), 261-272. DOI:
  43. Li, B., Wei, J., Wei, X., Tang, K., Liang, Y., Shu, K., & Wang, B. (2008). Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids and Surfaces B: Biointerfaces, 63(2), 269-275. DOI:
  44. Liu, Y. Y., Wang, B. C., Long, X. F., Duan, C. R., & Sakanishi, A. (2002). Effects of sound field on the growth of Chrysanthemum callus. Colloids and surfaces B: Biointerfaces, 24(3-4), 321-326. DOI:
  45. Lovelli, S., Scopa, A., Perniola, M., Di Tommaso, T., & Sofo, A. (2012). Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. Journal of plant physiology, 169(3), 226-233. DOI:
  46. Meng, Q. W., Zhou, Q., Gao, Y., & Zheng, S. J. (2011). Effects of acoustic frequency treatment on photosynthetic and chlorophyll fluorescence characters of tomato. Acta Agriculturae Jiangxi, 23, 57-59.
  47. Meng, Q. W., Zhou, Q., Gao, Y., Zheng, S. J., & Gao, Y. (2012). Effects of plant acoustic frequency technology on the growth traits, chlorophyll content and endogenous hormones of Lycopersicon esculentum. Hubei Agricultural Sciences, 51(8), 1591-1595.
  48. Meng, Q., Zhou, Q., Zheng, S., & Gao, Y. (2012). Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia, 16, 346-352. DOI:
  49. Munasinghe, D. S. P., Weerakoon, S. R., & Somaratne, S. (2018). The effect of Buddhist pirith chanting and Western pop music on growth performance of “Pranajeewa”, Codariocalyx motorius (Houtt.) H. Ohashi. Ceylon Journal of Science, 47(4), 357-361. DOI:
  50. Pal Bais, H., & Ravishankar, G. A. (2002). Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant cell, tissue and organ culture, 69(1), 1-34. DOI:
  51. Patel, A., Shankar, S., &. Narkhede, S. (2016). Effect of Sound on the growth of plant: Plants pick up the vibrations. Asian Journal of Plant Science and Research, 6(1), 6-9.
  52. Ponniah, S. (1955). On the effect of musical sounds of stringed instruments on the growth of plants. In : Proc. Indian Sci. Cong,42(3),255. DOI:
  53. Popescu, Ș., & Mocanu, R. (2013). The effect of music produced by winds instruments on cultivated plants. Lucrări Științifice, Universitatea de Stiinte Agricole Și Medicină Veterinară” Ion Ionescu de la Brad” Iași, Seria Agronomie, 56(1), 127-129.
  54. Qi, L., Teng, G., Hou, T., Zhu, B., & Liu, X. (2009, October). Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. In : International Conference on Computer and Computing Technologies in Agriculture (pp. 449-454). Springer, Berlin, Heidelberg. DOI:
  55. Rachieru, M. A., Iacob, I., Cristea, M., & Ortan, A. (2017). Studies regarding the influence of music on the wheat plants growth. Journal of Young Scientist, 5, 73-76.
  56. Reddy, K. G., & Ragavan, R. (2013). Classical ragas: A new protein supplement in plants. Indian Journal of Life Sciences, 3(1), 97.
  57. Retallack, D. L. (1973). The sound of music and plants. DeVorss.
  58. Seregin, I. V., & Ivanov, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian journal of plant physiology, 48(4), 523-544. DOI:
  59. Shaobin, G., Wu, Y., Li, K., Li, S., Ma, S., Wang, Q., & Wang, R. (2010). A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids and Surfaces B: Biointerfaces, 78(2), 367-371. DOI:
  60. Sharma, D., Gupta, U., Fernandes, A. J., Mankad, A., & Solanki, H. A. (2015). The effect of music on physico-chemical parameters of selected plants. International Journal of Plant, Animal and Environmental Sciences, 5(1), 282-287.
  61. Shen, Z. W., Sun, K. L., Yang, J., Cai, G., & Xi, B. (1999). The secondary structure changes of plant cell wall proteins aroused by strong sound waves using FT-IR. Acta Photonica Sinica, 28(7), 600-602.
  62. Singh, T. C. N., & Ponniah, S. (1955). On the Response of Structure of the Leaves of Balsam and Mimosa to the Muscial Sounds of Violin. Proceedings of the Indian Scientific Congressional Association, 42, 254.
  63. Subramanian, S., Chandrasekharan, P., Madhava-Menon, P., Raman, V. S., & Ponnaiya, B. W. X. (1969). study of the effect of music on the growth and yield of paddy. Madras Agricultural Journal, 56, 510-516.
  64. Swamy, N. V. C., & Nagendra, H. R. (2004). Vivekanda yoga research foundation bangalore-560019 “Effect of agnihotra on the germination of rice seed. Indian journal of traditional knowledge, 3(3), 231-239.
  65. Takahashi, H., Suge, H., & Kato, T. (1991). Growth promotion by vibration at 50 Hz in rice and cucumber seedlings. Plant and cell physiology, 32(5), 729-732. DOI:
  66. Uchida, A., & Yamamoto, K. T. (2002). Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant and cell physiology, 43(6), 647-651. DOI:
  67. Vanol, D., & Vaidya, R. (2014). Effect of types of sound (music and noise) and varying frequency on growth of guar or cluster bean (cyamopsis tetragonoloba) seed germination and growth of plants. Quest, 2(3), 9-14.
  68. Wang, B. C., Shao, J., Li, B., Lian, J., & Duan, C. R. (2004). Soundwave stimulation triggers the content change of the endogenous hormone of the Chrysanthemum mature callus. Colloids and surfaces B: Biointerfaces, 37(3-4), 107-112. DOI:
  69. Wang, B., Zhao, H., Duan, C., & Sakanishi, A. (2002). Effects of cell wall calcium on the growth of Chyrsanthemum callus under sound stimulation. Colloids and Surfaces B: Biointerfaces, 25(3), 189-195. DOI:
  70. Wang, B.C., Chen, X., Wang, Z., Fu, Q.Z., Hao, Z., & Ran, L. (2003). Biological effect of sound field stimulation on paddy rice seeds. Colloids and Surfaces B: Biointerfaces, 32(1), 29-34. DOI:
  71. Wang, B.C., Zhao, H.C., Liu, Y.Y., Jia, Y., & Sakanishi, A. (2001). The effects of alternative stress on the cell membrane deformability of chrysanthemum callus cells. Colloids and surfaces B: Biointerfaces, 20(4), 321-325. DOI:
  72. Wang, X. J., Wang, B. C., Jia, Y., Duan, C. R., & Sakanishi, A. (2003). Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids and Surfaces B: Biointerfaces, 29(2-3), 99-102. DOI:
  73. Wang, X. J., Wang, B. C., Jia, Y., Huo, D., & Duan, C. R. (2003). Effect of sound stimulation on cell cycle of chrysanthemum (Gerbera jamesonii). Colloids and surfaces. B, Biointerfaces, 29(2-3), 103-107. DOI:
  74. Weinberger, P., & Measures, M. (1979). Effects of the intensity of audible sound on the growth and development of Rideau winter wheat. Canadian journal of botany, 57(9), 1036-1039. DOI:
  75. Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, cell & environment, 33(4), 510-525. DOI:
  76. Xiao, H. (1990). Vegetables and music. Pictorial science, 6, 36.
  77. Yang, X. (2004). Effects of different sound intensities on root development of Actinidia chinensis plantlet. Chinese Journal of Applied and Environmental Biology, 10(3), 274-276.
  78. Yang, X. C., Wang, B. C., & Duan, C. R. (2003). Effects of sound stimulation on energy metabolism of Actinidia chinensis callus. Colloids and Surfaces B: Biointerfaces, 30(1-2), 67-72. DOI:
  79. Yang, X. C., Wang, B. C., Duan, C. R., Dai, C. Y., Jia, Y., & Wang, X. J. (2002). Brief study on physiological effects of sound field on Actinidia Chinese callus. Journal of Chongqing University, 25, 79-84. DOI:
  80. Yu, S., Jiang, S., Zhu, L., Zhang, J., & Jin, Q. (2013). Effects of acoustic frequency technology on rice growth, yield and quality. Transactions of the Chinese Society of Agricultural Engineering, 29(2), 141-147.
  81. Zha, X. Q., Luo, J. P., & Wei, P. (2009). Identification and classification of Dendrobium candidum species by fingerprint technology with capillary electrophoresis. South African Journal of Botany, 75(2), 276-282. DOI:
  82. Zhang, J., Jia, W., Yang, J., & Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 97(1), 111-119. DOI:
  83. Zhao, H. C., Wu, J., Xi, B. S., & Wang, B. C. (2002). Effects of sound-wave stimulation on the secondary structure of plasma membrane protein of tobacco cells. Colloids and Surfaces B: Biointerfaces, 25(1), 29-32. DOI:
  84. Zhao, H. C., Wu, J., Zheng, L., Zhu, T., Xi, B. S., Wang, B., & Younian, W. (2003). Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids and Surfaces B: Biointerfaces, 29(2-3), 143-147. DOI:
  85. Zhou, Q., Qu, Y., Li, B., Hou, T., Zhu, B., & Wang, D. (2010). Effects of sound frequency treatment on plant characters and chlorophyll fluorescence of the strawberry leaf. Journal of China Agricultural University, 15(1), 111-115.
  86. Zhu, J., Jiang, S., & Shen, L. (2011). Effects of music acoustic frequency on indoleacetic acid in plants. Agricultural Science & Technology-Hunan, 12(12), 1749-1752.