Main Article Content


Conventional farming always modifying by good innovation in agriculture,  while the holistic idea of organic farming checks the use of synthetic inputs where in opposite side, the concept of natural farming allowing farming with few traditional and locally available inputs. The all three farming concepts are fundamentally different, to check it on real field, a experiment was conducted on medium black calcareous clayey soil at Junagadh (Gujarat) during rabi 2019-20 to kharif 2020 in order to evaluate low cost natural farming, organic farming and conventional farming in major six crops of Gujarat. The experimental results revealed that conventional farming module significantly increased yields of crops as compared to organic farming and low cost natural farming. Significantly higher available nitrogen, phosphorous and potassium after harvest was found under conventional farming, while organic farming module registered significantly higher organic carbon, heat soluble S; DTPA-extractable Fe, Zn, Cu and Mn after harvest, which was found at par with conventional farming. Economic analysis showed that maximum net returns gross returns, and B:C ratio were observed under conventional farming module.


Calcareous DTPA Junagadh Experimental economic natural farming organic

Article Details

How to Cite
Korat, H., Mathukia, R., & Talaviya, H. (2023). Comparative evaluation of low-cost natural farming, organic farming and conventional farming in major crops of South Saurashtra region at Junagadh, Gujarat, India. Environment Conservation Journal, 24(3), 126–135.


  1. Arbad, B. K., Ismail, S., & Dhawan, A. S. (2014). Influence of long term use of farmyard manure and inorganic fertilizer on grain yield and nutrient availability in vertisols under soyabean-safflower sequence cropping. Legume Research, 37(6), 600-606. DOI:
  2. Banik, P., & Sharma, R. C. (2009). Effect of organic and inorganic sources of nutrients on the winter crops-rice cropping system in sub-humid tropics of India. Archives of Agronomy and Soil Science, 55(3), 285-294. DOI:
  3. Baskar, M., Solaimalai, A., Kumar, A., & Palanisamy, A. (2017). Residual effect of fly ash, farmy yard manure and fertilizers applied to groundnut on growth parameters, nutrient uptake, yield of sesame and post-harvest soil available fertility status in groundnut-sesame cropping system in northeastern zone of Tamil Nadu. International Journal of Current Microbiology and Applied Sciences, 6(6), 2917-2923. DOI:
  4. Behera, U. K., & Rautaray, S. K. (2010). Effect of biofertilizers and chemical fertilizers on productivity and quality parameters of durum wheat (Triticum turgidum) on a Vertisol of Central India. Archives of Agronomy and Soil Science, 56(1), 65-72. DOI:
  5. Bishnoi, R., & Bhati, A. (2017). An Overview: Zero budget natural farming. Trends in Biosciences, 10(46), 9314-9316.
  6. Brar, B. S., Singh, J., Singh, G., & Kaur, G. (2015). Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation. Agronomy, 5(2), 220-238. DOI:
  7. Chaturvedi, S., Chandel, A. S., Dhyani, V. C., & Singh, A. P. (2010). Productivity, profitability and quality of soybean (Glycine max) and residual soil fertility as influenced by integrated nutrient management. Indian Journal of Agronomy, 55(2), 133-137.
  8. Chaudhary, G. L.; Sharma, S. K.; Singh, K. P.; Chaudhary, S. and Bazaya, B. R. (2017a). Effect of Panchagavya on growth and yield of organic blackgram [Vigna mungo L. (Hepper)]. International Journal of Current Microbiology and Applied Sciences, 6(10), 1627-1632. DOI:
  9. Chaurasia, S. K., Jain, N., & Jain, N. (2014). Effect of integrated use of fertilizers, organic manures and micronutrients on productivity of sesame (Sesamum indicum). Annals of Agricultural Research, 30(3&4).
  10. De Ponti, T., Rijk, B., & Van Ittersum, M. K. (2012). The crop yield gap between organic and conventional agriculture. Agricultural systems, 108, 1-9.De Santis, M. A., Rinaldi, M., Menga, V., Codianni, P., Giuzio, L., Fares, C., & Flagella, Z. (2021). Influence of organic and conventional farming on grain yield and protein composition of chickpea genotypes. Agronomy, 11(2), 191.
  11. De Santis, M. A., Rinaldi, M., Menga, V., Codianni, P., Giuzio, L., Fares, C., & Flagella, Z. (2021). Influence of organic and conventional farming on grain yield and protein composition of chickpea genotypes. Agronomy, 11(2), 191. DOI:
  12. Fagnano, M., Fiorentino, N., D'Egidio, M. G., Quaranta, F., Ritieni, A., Ferracane, R., & Raimondi, G. (2012). Durum wheat in conventional and organic farming: yield amount and pasta quality in Southern Italy. The Scientific World Journal, 2012. DOI:
  13. Gopinath, K. A., Saha, S., Mina, B. L., Pande, H., Kundu, S., & Gupta, H. S. (2008). Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. Nutrient Cycling in Agroecosystems, 82(1), 51-60. DOI:
  14. Jackson, M. L. (1974). Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, pp. 301-325.
  15. Jadhao, S. D., Mali, D. V., Kharche, V. K., Singh, M., Bhoyar, S. M., Kadu, P. R., & Sonune, B. A. (2019). Impact of Continuous Manuring and Fertilization on Changes in Soil Quality under Sorghum-Wheat Sequence on a Vertisols. Journal of the Indian society of soil science, 67(1), 55-64. DOI:
  16. Jat, L. K., Singh, S. K., Latare, A. M., Singh, R. S., & Patel, C. B. (2013). Effect of dates of sowing and fertilizer on growth and yield of wheat (Triticum aestivum) in an Inceptisol of Varanasi. Indian Journal of Agronomy, 58(4), 611-614.
  17. Katkar, R. N., Sonune, B. A., & Kadu, P. R. (2011). Long-term effect of fertilization on soil chemical and biological characteristics and productivity under sorghum (Sorghum bicolor)-wheat (Triticum aestivum) system in Vertisol. Indian journal of agricultural sciences, 81(8), 734.
  18. Kitchen, J. L., McDonald, G. K., Shepherd, K. W., Lorimer, M. F., & Graham, R. D. (2003). Comparing wheat grown in South Australian organic and conventional farming systems. 1. Growth and grain yield. Australian journal of agricultural research, 54(9), 889-901. DOI:
  19. Kumar, R., Kumar, S., Yashavanth, B. S., Meena, P. C., Ramesh, P., Indoria, A. K., & Manjunath, M. (2020). Adoption of Natural Farming and its Effect on Crop Yield and Farmers' Livelihood in India.
  20. Lindsay, W. L. and Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421-428. DOI:
  21. Lyngdoh, B., Krishnamurthy, N., Jayadeva, H. M., Gowda, J., & Seenappa, C. (2019). Influence of foliar nutrition on the performance of soybean [Glycine max (L.) Merrill]. Mysore Journal of Agricultural Sciences, 53(2), 57-61.
  22. Mäder, P., Hahn, D., Dubois, D., Gunst, L., Alföldi, T., Bergmann, H., ... & Niggli, U. (2007). Wheat quality in organic and conventional farming: results of a 21 year field experiment. Journal of the Science of Food and Agriculture, 87(10), 1826-1835. DOI:
  23. Manjunatha, G. S., Upperi, S. N., Pujari, B. T., Yeledahalli, N. A., & Kuligod, V. B. (2009). Effect of farm yard manure treated with jeevamrutha on yield attributes, yield and economics of sunflower (Helianthus annuus L.). Karnataka Journal of Agricultural Sciences, 22(1), 198-199.
  24. Melissa, V. (2003). Converting to an Organic Farming System.
  25. Mere, V., Singh, A. K., Singh, M., Jamir, Z., & Gupta, R. C. (2013). Effect of nutritional schedule on productivity and quality of soybean varieties and soil fertility. Legume Research-An International Journal, 36(6), 528-534.
  26. Mwale, M., Mapiki, A., & Phiri, L. K. (1997). To synchronize nutrient availability with plant uptake. The Biology and Fertility of Tropical Soils: A TSBF Report, 1998, 40-41.
  27. Nagar, U. S. (2017). Long-term effects of inorganic fertilizers and FYM on soil chemical properties and yield of wheat under rice-wheat cropping system. HIMALAYAN ECOLOGY, 25, 28.
  28. Olsen, S. R.; Cole, C. V.; Watanabe, F. S. and Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with NaHCO3. Circular USDA, 939.
  29. Pradeep, S., Ullasa, M. Y., Naik, A. H., Ganapathi & Divya, M. (2018). Effect of different organic nutrient management practices on growth, yield of pigeonpea (Cajanus cajan L. Millsp.) and soil properties. Research Journal of Agricultural Sciences, 9(2), 352-357.
  30. Sebby, K. (2010). The green revolution of the 1960's and its impact on small farmers in India.
  31. Sikka, R., Singh, D., Deol, J. S., & Kumar, N. (2018). Effect of integrated nutrient and agronomic management on growth, productivity, nutrient uptake and soil residual fertility status of soybean. Agricultural Science Digest, 38(2), 103-107. DOI:
  32. Singh, N., Joshi, E., Sasode, D. S., Sikarwar, R. S., & Rawat, G. S. (2018). Liquid Biofertilizer and Inorganic Nutrients Effect on Physiological, Quality Parameters, and Productivity of Kharif Groundnut (Arachis hypogaea L.). International Journal of Current Microbiology and Applied Sciences, 7(9), 729-735. DOI:
  33. Subbiah, B. V. and Asija, G. C. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science, 25(2), 259-260.
  34. Sudhakaran, M., Ramamoorthy, D., & Kumar, S. R. (2013). Impacts of conventional, sustainable and organic farming system on soil microbial population and soil biochemical properties, Puducherry, India. International Journal of Environmental Sciences, 4(1), 28-41.
  35. Van Stappen, F., Loriers, A., Mathot, M., Planchon, V., Stilmant, D., & Debode, F. (2015). Organic versus conventional farming: the case of wheat production in Wallonia (Belgium). Agriculture and Agricultural Science Procedia, 7, 272-279. DOI:
  36. Williams, C. H. and Steinbergs, A. (1959). Soil sulphur fraction as chemical indices of available sulphur in some Australian soils. Australian Journal Agricultural Research, 10, 340-352. DOI: