Main Article Content
Abstract
In present genomic era, rapid genetic gains can be achieved by exploitation of novel genes associated with the trait of interest employing molecular breeding and genetic engineering. In the present study genes responsible for drought stress in rice 10746 expressed sequence tags (ESTs), expressed under drought stress condition were retrieved from the NCBI. The downloaded ESTs were clustered and assembled into 1120 contigs and 5559 singletones using CAP3 programme. The contigs were further subjected to identification of transcription factor, a total of 62 putative transcription factors were identified and sorted into 17 putative TF families. The contigs were subjected to BLASTX in NCBI to identify unique sequence which were further aligned to Oryza sativa Indica Group (ASM465v1) in gramene database using BLAT to retrieve the upstream and downstream sequences for putative gene identification. The retrieved sequences were analysed for transcription start site, PolyA tails and coding sequences which are essential features of gene using online tool fsgene. The present study found that, 46 contigs out of 1120 contigs has key gene structure and was considered as putative novel genes which may contribute to the drought tolerance in indica rice. These genes may be useful in development of drought tolerant varieties through smart breeding
Keywords
Article Details
Copyright (c) 2022 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Bhati, J., Chaduvula, P. K., Rai, A., Rani, R., Gaikwad, K., Maria, S. S., & Kumar, S., (2016). In-Silico Prediction and Functional Analysis of Salt Stress Responsive Genes in Rice (Oryza sativa). Rice Research,4. DOI: https://doi.org/10.4172/2375-4338.1000164
- Chow, C. N., Zheng, H. Q., Wu, N. Y., Chien, C. H., Huang, H. D., Lee, T. Y., & Chang, W. C. (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic acids research, 44(D1), D1154-D1160. DOI: https://doi.org/10.1093/nar/gkv1035
- Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Hasan, M. M., Oladosu, Y. A., &Olalekan, K. K. (2019). Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach. Molecular biology reports, 46(1), 1519-1532. DOI: https://doi.org/10.1007/s11033-019-04584-2
- Czikkel, B. E., & Maxwell, D. P. (2007). NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. Journal of plant physiology, 164(9), 1220-1230. DOI: https://doi.org/10.1016/j.jplph.2006.07.010
- Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., & Briggs, S. (2002). A draft sequence of the rice genome (Oryzasativa L. ssp. japonica). Science, 296(5565), 92-100. DOI: https://doi.org/10.1126/science.1068275
- Guo, J. W., Li, Q., Chen, W. Q., Li, X., Li, L. Q., Liu, T. G., &Luo, P. G. (2015). In silico cloning and chromosomal localization of EST sequences that are related to leaf senescence using nulli-tetrasomes in wheat. Cereal research communications, 43(3), 364-373. DOI: https://doi.org/10.1556/0806.43.2015.014
- Gupta, A., Rico-Medina, A., &Caño-Delgado, A. I. (2020).The physiology of plant responses to drought. Science, 368(6488), 266-269. DOI: https://doi.org/10.1126/science.aaz7614
- Huang, J., Wang, J. F., Wang, Q. H., & Zhang, H. S. (2005). Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Sequence, 16(2), 130-136. DOI: https://doi.org/10.1080/10425170500061590
- Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome research, 9(9), 868-877. DOI: https://doi.org/10.1101/gr.9.9.868
- Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. Genome research, 12(4), 656-664.
- Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, C. M., Lee, S. I., Chun, H. J., & Cho, M. J. (2001). A novel cold‐inducible zinc finger protein from soybean, SCOF‐1, enhances cold tolerance in transgenic plants. The Plant Journal, 25(3), 247-259. DOI: https://doi.org/10.1046/j.1365-313x.2001.00947.x
- Kim, S. H., Ahn, Y. O., Ahn, M. J., Jeong, J. C., Lee, H. S., &Kwak, S. S. (2013). Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiology and Biochemistry, 70, 445-454. DOI: https://doi.org/10.1016/j.plaphy.2013.06.011
- Luo, J., Zhou, J. J., & Zhang, J. Z. (2018). Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences, 19(1), 259. DOI: https://doi.org/10.3390/ijms19010259
- Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., & Goto, S. (2006). EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic acids research, 34(suppl_2), W459-W462. DOI: https://doi.org/10.1093/nar/gkl066
- Miura, K., Ashikari, M., & Matsuoka, M. (2011).The role of QTLs in the breeding of high-yielding rice. Trends in plant science, 16(6), 319-326. DOI: https://doi.org/10.1016/j.tplants.2011.02.009
- Muthamilarasan, M., Bonthala, V. S., Mishra, A. K., Khandelwal, R., Khan, Y., Roy, R., & Prasad, M. (2014). C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Functional & Integrative Genomics, 14(3), 531-543. DOI: https://doi.org/10.1007/s10142-014-0383-2
- Nahas, L. D., Al-Husein,N., Lababidi, G., & Hamwieh,. (2019). A. In-silico prediction of novel genes responsive to drought and salinity stress tolerance in bread wheat (Triticum aestivum). PLoS One. 214(10):e022396
- Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009).Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant physiology, 149(1), 88-95. DOI: https://doi.org/10.1104/pp.108.129791
- Nelson, D. E., Repetti, P. P., Adams, T. R., Creelman, R. A., Wu, J., Warner, D. C., & Heard, J. E. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences, 104(42), 16450-16455. DOI: https://doi.org/10.1073/pnas.0707193104
- Ni, Z., Hu, Z., Jiang, Q., & Zhang, H. (2013). GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant molecular biology, 82(1), 113-129. DOI: https://doi.org/10.1007/s11103-013-0040-5
- Nuruzzaman, M., Sharoni, A. M., & Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in microbiology, 4, 248. DOI: https://doi.org/10.3389/fmicb.2013.00248
- Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: a review. International journal of molecular sciences, 20(14), 3519. DOI: https://doi.org/10.3390/ijms20143519
- Pandey, V., & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Sci, 22(4), 147-161 DOI: https://doi.org/10.1016/j.rsci.2015.04.001
- Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeumvulgare L.). Journal of experimental botany, 64(11), 3201-3212. DOI: https://doi.org/10.1093/jxb/ert158
- Sahebi, M., Hanafi, M. M., Rafii, M. Y., Mahmud, T. M. M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., Miah, G., & Atabaki, N. (2018). Improvement of Drought Tolerance in Rice (Oryza sativa): Genetics, Genomic Tools, and the WRKY Gene Family. Biomed Res Int, 3158474. DOI: https://doi.org/10.1155/2018/3158474
- Salamov, A. A., &Solovyev, V. V. (2000).Ab initio gene finding in Drosophila genomic DNA. Genome research, 10(4), 516-522. DOI: https://doi.org/10.1101/gr.10.4.516
- Sanchez, D. H., Pieckenstain, F. L., Szymanski, J., Erban, A., Bromke, M., Hannah, M. A., ...&Udvardi, M. K. (2011). Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PloS one, 6(2), e17094. DOI: https://doi.org/10.1371/journal.pone.0017094
- Shani, E., Salehin, M., Zhang, Y., Sanchez, S. E., Doherty, C., Wang, R., ...& Estelle, M. (2017). Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Current Biology, 27(3), 437-444. DOI: https://doi.org/10.1016/j.cub.2016.12.016
- Singhal, P., Jan, A. T., Azam, M., &Haq, Q. M. R. (2016). Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Frontiers in Life Science, 9(1), 52-63. DOI: https://doi.org/10.1080/21553769.2015.1077478
- Statista.(2021). https://www.statista.com/study/48366/India.
- Su, H., Cao, Y., Ku, L., Yao, W., Cao, Y., Ren, Z., ...& Chen, Y. (2018). Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. Journal of experimental botany, 69(21), 5177-5189. DOI: https://doi.org/10.1093/jxb/ery299
- Swamy, B. M., & Kumar, A. (2013). Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnology advances, 31(8), 1308-1318. DOI: https://doi.org/10.1016/j.biotechadv.2013.05.004
- Upadhyaya, H., & Panda, S. K. (2019).Drought stress responses and its management in rice.In Advances in rice research for abiotic stress tolerance (pp. 177-200).Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-814332-2.00009-5
- Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in plant science, 7, 67. DOI: https://doi.org/10.3389/fpls.2016.00067
- Xu, K., Chen, S., Li, T., Ma, X., Liang, X., Ding, X., ...&Luo, L. (2015). OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC plant biology, 15(1), 1-13. DOI: https://doi.org/10.1186/s12870-015-0532-3
- Yamaguchi, T. & Blumwald, E. (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci., 10 (12): 615-620 DOI: https://doi.org/10.1016/j.tplants.2005.10.002
- Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual review of plant biology, 57(1), 781-803. DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105444
- Yang, X., Wang, B., Chen, L., Li, P., & Cao, C. (2019). The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep, 9(1):1–2. DOI: https://doi.org/10.1038/s41598-019-40161-0
- Yu, J., Hu, S., Wang, J., Wong, G. K. S., Li, S., Liu, B., & Yang, H. (2002). A draft sequence of the rice genome (Oryzasativa L. ssp. indica). Science, 296(5565), 79-92.
- Yuan, Y., Fang, L., Karungo, S. K., Zhang, L., Gao, Y., Li, S., & Xin, H. (2016). Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Reports, 35(3), 655-666. DOI: https://doi.org/10.1007/s00299-015-1910-x
- Zhang, A., Yang, X., Lu, J., Song, F., Sun, J., Wang, C., ..& Zhao, B. (2021). OsIAA20, an Aux/IAA protein, mediates abiotic stress tolerance in rice through an ABA pathway. Plant Science, 308, 110903. DOI: https://doi.org/10.1016/j.plantsci.2021.110903
References
Bhati, J., Chaduvula, P. K., Rai, A., Rani, R., Gaikwad, K., Maria, S. S., & Kumar, S., (2016). In-Silico Prediction and Functional Analysis of Salt Stress Responsive Genes in Rice (Oryza sativa). Rice Research,4. DOI: https://doi.org/10.4172/2375-4338.1000164
Chow, C. N., Zheng, H. Q., Wu, N. Y., Chien, C. H., Huang, H. D., Lee, T. Y., & Chang, W. C. (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic acids research, 44(D1), D1154-D1160. DOI: https://doi.org/10.1093/nar/gkv1035
Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Hasan, M. M., Oladosu, Y. A., &Olalekan, K. K. (2019). Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach. Molecular biology reports, 46(1), 1519-1532. DOI: https://doi.org/10.1007/s11033-019-04584-2
Czikkel, B. E., & Maxwell, D. P. (2007). NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. Journal of plant physiology, 164(9), 1220-1230. DOI: https://doi.org/10.1016/j.jplph.2006.07.010
Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., & Briggs, S. (2002). A draft sequence of the rice genome (Oryzasativa L. ssp. japonica). Science, 296(5565), 92-100. DOI: https://doi.org/10.1126/science.1068275
Guo, J. W., Li, Q., Chen, W. Q., Li, X., Li, L. Q., Liu, T. G., &Luo, P. G. (2015). In silico cloning and chromosomal localization of EST sequences that are related to leaf senescence using nulli-tetrasomes in wheat. Cereal research communications, 43(3), 364-373. DOI: https://doi.org/10.1556/0806.43.2015.014
Gupta, A., Rico-Medina, A., &Caño-Delgado, A. I. (2020).The physiology of plant responses to drought. Science, 368(6488), 266-269. DOI: https://doi.org/10.1126/science.aaz7614
Huang, J., Wang, J. F., Wang, Q. H., & Zhang, H. S. (2005). Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Sequence, 16(2), 130-136. DOI: https://doi.org/10.1080/10425170500061590
Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome research, 9(9), 868-877. DOI: https://doi.org/10.1101/gr.9.9.868
Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. Genome research, 12(4), 656-664.
Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, C. M., Lee, S. I., Chun, H. J., & Cho, M. J. (2001). A novel cold‐inducible zinc finger protein from soybean, SCOF‐1, enhances cold tolerance in transgenic plants. The Plant Journal, 25(3), 247-259. DOI: https://doi.org/10.1046/j.1365-313x.2001.00947.x
Kim, S. H., Ahn, Y. O., Ahn, M. J., Jeong, J. C., Lee, H. S., &Kwak, S. S. (2013). Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiology and Biochemistry, 70, 445-454. DOI: https://doi.org/10.1016/j.plaphy.2013.06.011
Luo, J., Zhou, J. J., & Zhang, J. Z. (2018). Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences, 19(1), 259. DOI: https://doi.org/10.3390/ijms19010259
Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., & Goto, S. (2006). EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic acids research, 34(suppl_2), W459-W462. DOI: https://doi.org/10.1093/nar/gkl066
Miura, K., Ashikari, M., & Matsuoka, M. (2011).The role of QTLs in the breeding of high-yielding rice. Trends in plant science, 16(6), 319-326. DOI: https://doi.org/10.1016/j.tplants.2011.02.009
Muthamilarasan, M., Bonthala, V. S., Mishra, A. K., Khandelwal, R., Khan, Y., Roy, R., & Prasad, M. (2014). C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Functional & Integrative Genomics, 14(3), 531-543. DOI: https://doi.org/10.1007/s10142-014-0383-2
Nahas, L. D., Al-Husein,N., Lababidi, G., & Hamwieh,. (2019). A. In-silico prediction of novel genes responsive to drought and salinity stress tolerance in bread wheat (Triticum aestivum). PLoS One. 214(10):e022396
Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009).Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant physiology, 149(1), 88-95. DOI: https://doi.org/10.1104/pp.108.129791
Nelson, D. E., Repetti, P. P., Adams, T. R., Creelman, R. A., Wu, J., Warner, D. C., & Heard, J. E. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences, 104(42), 16450-16455. DOI: https://doi.org/10.1073/pnas.0707193104
Ni, Z., Hu, Z., Jiang, Q., & Zhang, H. (2013). GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant molecular biology, 82(1), 113-129. DOI: https://doi.org/10.1007/s11103-013-0040-5
Nuruzzaman, M., Sharoni, A. M., & Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in microbiology, 4, 248. DOI: https://doi.org/10.3389/fmicb.2013.00248
Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: a review. International journal of molecular sciences, 20(14), 3519. DOI: https://doi.org/10.3390/ijms20143519
Pandey, V., & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Sci, 22(4), 147-161 DOI: https://doi.org/10.1016/j.rsci.2015.04.001
Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeumvulgare L.). Journal of experimental botany, 64(11), 3201-3212. DOI: https://doi.org/10.1093/jxb/ert158
Sahebi, M., Hanafi, M. M., Rafii, M. Y., Mahmud, T. M. M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., Miah, G., & Atabaki, N. (2018). Improvement of Drought Tolerance in Rice (Oryza sativa): Genetics, Genomic Tools, and the WRKY Gene Family. Biomed Res Int, 3158474. DOI: https://doi.org/10.1155/2018/3158474
Salamov, A. A., &Solovyev, V. V. (2000).Ab initio gene finding in Drosophila genomic DNA. Genome research, 10(4), 516-522. DOI: https://doi.org/10.1101/gr.10.4.516
Sanchez, D. H., Pieckenstain, F. L., Szymanski, J., Erban, A., Bromke, M., Hannah, M. A., ...&Udvardi, M. K. (2011). Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PloS one, 6(2), e17094. DOI: https://doi.org/10.1371/journal.pone.0017094
Shani, E., Salehin, M., Zhang, Y., Sanchez, S. E., Doherty, C., Wang, R., ...& Estelle, M. (2017). Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Current Biology, 27(3), 437-444. DOI: https://doi.org/10.1016/j.cub.2016.12.016
Singhal, P., Jan, A. T., Azam, M., &Haq, Q. M. R. (2016). Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Frontiers in Life Science, 9(1), 52-63. DOI: https://doi.org/10.1080/21553769.2015.1077478
Statista.(2021). https://www.statista.com/study/48366/India.
Su, H., Cao, Y., Ku, L., Yao, W., Cao, Y., Ren, Z., ...& Chen, Y. (2018). Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. Journal of experimental botany, 69(21), 5177-5189. DOI: https://doi.org/10.1093/jxb/ery299
Swamy, B. M., & Kumar, A. (2013). Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnology advances, 31(8), 1308-1318. DOI: https://doi.org/10.1016/j.biotechadv.2013.05.004
Upadhyaya, H., & Panda, S. K. (2019).Drought stress responses and its management in rice.In Advances in rice research for abiotic stress tolerance (pp. 177-200).Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-814332-2.00009-5
Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in plant science, 7, 67. DOI: https://doi.org/10.3389/fpls.2016.00067
Xu, K., Chen, S., Li, T., Ma, X., Liang, X., Ding, X., ...&Luo, L. (2015). OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC plant biology, 15(1), 1-13. DOI: https://doi.org/10.1186/s12870-015-0532-3
Yamaguchi, T. & Blumwald, E. (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci., 10 (12): 615-620 DOI: https://doi.org/10.1016/j.tplants.2005.10.002
Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual review of plant biology, 57(1), 781-803. DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105444
Yang, X., Wang, B., Chen, L., Li, P., & Cao, C. (2019). The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep, 9(1):1–2. DOI: https://doi.org/10.1038/s41598-019-40161-0
Yu, J., Hu, S., Wang, J., Wong, G. K. S., Li, S., Liu, B., & Yang, H. (2002). A draft sequence of the rice genome (Oryzasativa L. ssp. indica). Science, 296(5565), 79-92.
Yuan, Y., Fang, L., Karungo, S. K., Zhang, L., Gao, Y., Li, S., & Xin, H. (2016). Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Reports, 35(3), 655-666. DOI: https://doi.org/10.1007/s00299-015-1910-x
Zhang, A., Yang, X., Lu, J., Song, F., Sun, J., Wang, C., ..& Zhao, B. (2021). OsIAA20, an Aux/IAA protein, mediates abiotic stress tolerance in rice through an ABA pathway. Plant Science, 308, 110903. DOI: https://doi.org/10.1016/j.plantsci.2021.110903