Main Article Content

Abstract

Attempts were made to analyze trends of 44-years (1970-2013) of long-term rainfall using probability distribution functions, seasonal distribution, onset-withdrawal of monsoon, dry and wet spell(s) in 52 standard meteorological weeks (SMW) for Ludhiana (Punjab). Results revealed monsoon season rainfall (598.5 mm) in 39 rainy days delivers about 79.4 % of annual rainfall and its effective rainfall was 434.7 mm; pre-monsoon, post-monsoon and winter season contributes 8.2, 7.9 and 4.5 % of annual rainfall. This call for alternate cropping system with low water requiring crops to match with rainfall and distribution, less reliance on irrigation would arrest rapid declining of groundwater.

Keywords

Irrigation planning Ludhiana (Punjab) Markov chain model Analysis Probability analysis Rainfall analysis Rice-wheat

Article Details

How to Cite
Sethi, . R. R. ., Mandal, . K. G., Behera , A., Sarangi, . A., Aggarwal, . R. ., & Ambast , S. K. . (2019). Rainfall probability analysis for conservation of water resources for sustainable irrigation planning. Environment Conservation Journal, 20(1&2), 87–99. https://doi.org/10.36953/ECJ.2019.1008.1215

References

  1. Admasu, W., Tadesse, K., Yemenu, F. and Abdulkadir, B. 2014. Markov chain analysis of dry, wet weeks and statistical analysis of weekly rainfall for agricultural planning at Dhera, central rift valley region of Ethiopia. African J Agric. Res., 9(29): 2205-2213.
  2. Aksoy, H., 2000. Use of gamma distribution in hydrological analysis. Turk J Engg Env Sci., 24: 419-428.
  3. Babu, P. N., Lakshminarayana, P., 1997. Rainfall analysis of dry land watershed-Polkepad: a case study. J Indian Water Res Soc, 17:34-38.
  4. Banikm, P., Mandal, A., Sayedur, R. M. 2002. Markov chain analysis of weekly rainfall data in determining drought-proneness. Discret Dyn Nat Soc, 7: 231–239.
  5. Bhakar, S. R., Mohammed, I., Devanda, M., Chhajed, N., Bansal, A. K. 2008. Probability analysis of rainfall at Kota. Indian J Agric Res, 42(3): 201 -206.
  6. Bhale, V. M., Tupe, A. R., Karmore, J. V. and Kale, M. A. 2012. Crop planning in relation to climate change in rain fed regions. J Agric Technol, 8(2): 443-452.
  7. Bhelawe, S., Manikandan, N., Khavse, R., Chaudhary, J. L., Patel, S. R. 2015. Analysis of rainfall probabilities for strategic crop planning in Raipur district of Chhattisgarh state. Curr World Environ, 10(1): 253-257.
  8. Chahal, G. B. S., Sood, A., Jalota, S. K., Choudhury, B. U., Sharma, P. K. 2007. Yield, evapotranspiration and water productivity of rice (Oryza sativa L.)-wheat (Tritium aestivum L.) system in Punjab (India) as influenced by transplanting date of rice and weather parameters, Agric Water Manag, 88(1-3): 14-22.
  9. Dabral, P. P., Purkayastha, K., Aram, M. 2014. Dry and wet spell probability by Markov chain model- a case study of north Lakhimpur (Assam) India. Int J Agric Biol Engg, 7(6): 8-13.
  10. Dash, M. K. and Senapati, P.C. 1992. Forecasting of dry and wet spell at Bhubaneswar for agricultural planning. Indian J Soil Cons, 10(2): 75-82.
  11. Dash, S. K., Kulkarni, M. A., Mohanty, U. C. and Prasad, K. 2009. Changes in the characteristics of rain events in India. J geophysical Res, 114(10).doi 10.1029/2008JD010572
  12. DES, 2014. Agricultural Statistics at a Glance , 2014. Directorate of Economics and Statistics, Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India. Oxford University Press, New Delhi, pp 32 & 304-305.
  13. Ebert, E. E. 2001. Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon Weather Rev 129: 2461-2480.
  14. Fischer, B. M. C., Mul, M. L. and Savenije, H. H. G. 2013. Determining spatial variability of dry spells: a Markov-based method, applied to the Makanya catchment, Tanzania. Hydrol Earth Syst Sci, 17: 2161–2170.
  15. Fritsch, J. M. 1998. Quantitative precipitation forecasting: report of the eighth prospectus development team, U.S. weather research program. American Met Soc, 79: 285–299.
  16. Gupta, R. and Seth, A. 2007. A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic plains (IGP). Crop Prot, 26: 436–447.
  17. Hati, K. M., Chaudhary, R. S., Mandal, K. G., Bandyopadhyay, K. K., Singh, R. K., Sinha, N. K., Mohanty, M., Somasundaram, J. and Saha, R. 2014. Effects of tillage, residue and fertilizer nitrogen on crop yields, and soil physical properties under soybean-wheat rotation in vertisols of central India. Agric Res, DOI 10.1007/s40003-014-0141-7.
  18. Hobbs, P. R. and Gupta, R. K. 2003. Rice–wheat cropping systems in the Indo- Gangetic plains: Issues of water productivity in relation to new resource conserving technologies. CAB International 2003: 239-253.
  19. Jain, S. K. and Kumar V. 2012. Trend analysis of rainfall and temperature data for India. Curr Sci, 102 (1): 37-49.
  20. Kaur, P., Singh, H., Bal, S. K., Sandhu, S. S. and Singh, A. 2011. Quantitative evaluation of weather variability and rice yields in Punjab- A case study. J Res Punjab Agric Univ, 48: 5-15.
  21. Kaur, S. and Vatta, K. 2015. Groundwater depletion in central Punjab: pattern, access and adaptations, Curr Sci, 108(4): 485-490.
  22. Khan, S. A., Kumar, S., Hussain, M. Z. and Kalra, N. 2009. Climate change, climate variability and Indian agriculture: impacts vulnerability and adaptation strategies. Climate Change and Crops, Environ Sci Engg: 19-39.
  23. Kothari, A. K., Jain, P. M. and Kumar, V. 2009. Analysis of weekly rainfall data using onset of monsoon approach for micro level crop planning. Indian J Soil Cons, 37 (3): 164-171.
  24. Kumar, A. 2000. Prediction of annual maximum daily rainfall of Ranichauri (Tehri Garhwal) based on probability analysis. Indian J Soil Cons, 28: 178- 180.
  25. Kumar, A., Kaushal, K. K. and Singh R. D. 2007. Prediction of annual maximum daily rainfall of Almora based on probability analysis. Indian J Soil Cons,35: 82-83.
  26. Kumar, K. K., Kumar, K. R., Ashrit, R. G., Deshpande, N. R. and Hansen, J. W. 2004. Climate impacts on Indian Agriculture. Int J Climatl, 24: 1375-1393.
  27. Kumar, R., Singh, R. D. and Sharma, K. D. 2005. Water resources of India. Curr Sci, 89 (5): 794-811.
  28. Kumar, V., Jain, S. K. and Singh, Y. 2010. Analysis of long-term rainfall trends in India. Hydrological Sciences Journal 55 (4): 484-496.
  29. Machiwal, D., Dayal, D. and Kumar, S. 2017. Long-term rainfall trends and change points in hot and cold arid regions of India. Hydrological Sciences Journal, 62 (7): 1050-1066.
  30. Mandal, K. G., Hati, K. M., Misra, A. K., Bandyopadhyay, K. K. and Tripathi, A. K. 2013a. Land surface modification and crop diversification for enhancing productivity of a vertisol. International J Plant Production, 7 (3): 455-472.
  31. Mandal, K. G., Kannan, K., Thakur, A. K., Kundu, D. K., Brahmanand, P. S. and Kumar, A. 2014. Performance of rice systems, irrigation and organic carbon storage. Cereal Research Communications, 42 (2): 346-358.
  32. Mandal, K. G., Kundu, D. K., Thakur, A. K., Kannan, K., Brahmanand, P. S. and Kumar, A. 2013b. Aerobic rice response to irrigation regimes and fertilizer nitrogen rates. J Food Agric Environ, 11 (3&4): 1148-1153.
  33. Mandal, K. G., Padhi, J., Kumar, A., Ghosh, S., Panda, D. K., Mohanty, R. K., and Raychaudhuri, M., 2015. Analyses of rainfall using probability distribution and Markov chain models for crop planning in Daspalla region in Odisha, India. Theor Appl Climatol, 121: 517-528.
  34. Mandal, S., Choudhury, B. U. 2015. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models. Theor Appl Climatol, 121: 87–97.
  35. Mishra, P. K., Khare, D., Mondal, A., Kundu, S. and Shukla, R. 2013. Statistical and probability analysis of rainfall for crop planning in a canal command. Agric Sustainable Development, 1(1): 95-102.
  36. Mohanty, S., Marathe R. A. and Singh S. 2000. Probability models for prediction of annual maximum daily rainfall for Nagpur. J Soil Water Conserv, 44(1-2): 38–40.
  37. Moore, R. J. 2009. The probability-distributed principle and runoff production at point and basin scales. Hydrolog Sci J 30(2): 273-297.
  38. Nema, A. K., Bisen, Y., Singh, S. R. and Singh, T. 2013. Markov chain approach – dry and wet spell rainfall probabilities in planning rainfed rice based production system. Indian J Dryland Agric Res Dev, 28(2): 16-20.
  39. Panda, R. K., Naik, B. S., Gore, K. P., Mishra, P. K., Jakhar, P. and Gowda, H. 2009. Use of probability distribution models in rainfall analysis for post monsoon crop planning in Eastern ghat region of Orissa. Indian J Dryland Agric Res Dev 24(1): 75-80.
  40. Pandarinath, N. 1991. Markov chain model probability of dry and wet weeks during monsoon periods over Andhra Pradesh. Mausam, 42(4): 393–400.
  41. Panigrahi, B. and Panda, S. N. 2002. Dry spell probability by Markov chain model and its application to crop planning in Kharagpur. Indian J Soil Cons, 30(1): 95–100.
  42. Prasanna, V. 2014. Impact of monsoon rainfall on the total food grain yield over India. J Earth Syst Sci, 123(5): 1129-1145.
  43. Punyawardena, B. V. R. 2002. Identification of the potential of growing seasons by the onset of seasonal rains: A study in the DL1 region of the North Central dry zone. J National Sci Foundation Sri Lanka 30(1&2): 13-21.
  44. Rodell, M., Velicogna, I. and Famiglietti, J. S. 2009. Satellite-based estimates of groundwater depletion in India. Nature, 460 (7258): 999. doi:10.1038/nature08238
  45. Sharda, V. N., Das, P. K. 2005. Modeling weekly rainfall data for crop planning in a sub-humid climate of India. Agric Water Manage, 76: 120–138.
  46. Sharma, B. R., Rao, K. V., Vittal, K. P. R., Ramakrishna. Y. S., Amarasinghe. U. 2010. Estimating the potential of rainfed agriculture in India: prospects for water productivity improvements. Agric Water Manage 97(1): 23-30.
  47. Sidhu, R. S., Vatta, K. and Dhaliwal, H. S. 2010. Conservation agriculture in Punjab – economic implications of technologies and practices. Indian J Agric Econ, 65: 413–427.
  48. Singh, A. and Kaur J. 2012. Impact of conservation tillage on soil properties in rice-wheat cropping system. Agric Sci Res J, 2(1): 30-41.
  49. Singh, B., Rajpurohit, D., Vasishth, A. and Singh, J. 2012. Probability analysis for estimation of annual one day maximum rainfall of Jhalarapatan area of Rajasthan, India. Plant Arch, 12(2): 1093-1100.
  50. Singh, G., Kumar, R., Mishra, C. D., Srikant, M. S., De, N., 2013. Precipitation management under rice based rainfed cropping system: a case study for transect 4 of Indo-Gangetic plain. Int J Agronomy Plant Production, 4 (S): 3782-3790.
  51. Singh, K. 2011. Groundwater depletion in Punjab: measurement and countering strategies. Indian J Agric Econ, 66: 583–589.
  52. Singh, R. K. 2001. Probability analysis for prediction of annual maximum rainfall of eastern Himalaya (Sikkim mid hills). Indian J Soil Cons, 29: 263-265.
  53. Solanki, N. S. and Singh, A. K. 2009. Rainfall analysis for crop planning in the humid southern plains of Rajasthan. J Water Manage, 17 (2): 81-86.
  54. Sonnadara, D. U. J. and Jayewardene, D. R. 2015. A Markov chain probability model to describe wet and dry patterns of weather at Colombo. Theor Appl Climatol, 119: 333–340.
  55. Srinivasareddy, G. V., Bhaskar, S. R., Purohit, R. C., Chittora, A. K. 2008. Markov chain model probability of dry, wet weeks and statistical analysis of weekly rainfall for agricultural planning at Bangalore. Karnataka J Agric Sci, 21(1): 12–16.
  56. Subash, N. and Sikka, A. K. 2014. Trend analysis of rainfall and temperature and its relationship over India. Theor Appl Climato, l 117: 449–462.
  57. Subash, N., Ram, M.H.S. and Sikka, A. K. 2011. Decadal frequency and trends of extreme excess/deficit rainfall during monsoon season over different meteorological subdivisions of India. Hydrological Sciences Journal, 56 (7): 1090-1109.
  58. Subudhi, R. 2007. Probability analysis for prediction of annual maximum daily rainfall of Chakapada block of Kandhamal district in Orissa. Indian J Soil Cons, 35:84-85.
  59. Timsina, J. and Connor, D. J. 2001. Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crop Res, 69: 93-132.
  60. Tiwari, V. M., Wahr, J. and Swenson, S., 2009. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett, 36, L18401. doi:10.1029/2009 GL039401
  61. Walia, S. S., Gill, M. S., Bhushan, B., Phutela, R. P., Bhushan, A.R. P. 2011. Alternate cropping systems to rice (Oryza sativa)-wheat (Triticum aestivum) for Punjab. Indian J Agron, 56(1): 20-27