Main Article Content

Abstract

Soil salinity is associated with the accumulation of soluble salts in higher concentration deteriorating soil health associated with unfavourable environment for plant growth. It is mostly confined to those regions where there is high temperature and low precipitation, mostly in arid and semi-arid regions. Major factors responsible for soil salinity can be categorised into primary and secondary factor affecting at the spatial and temporal scale. Higher concentration of soluble salts in soil increase the osmotic potential disrupting the movement of water from root to leaf. So, soil salinity is primarily associated with the water stress condition in plants which is a direct impact to plants. Indirectly it interferes with the nutrients absorption which is one of the most important factors for proper plant growth. Plants poses different mechanisms to avoid salt stress condition in soil but maximum of it are an active processes were additional energy must have to spend for it that can impact proper growth and production. The ions primarily responsible for both the soil and plant stress under soil salinity are Na+ and Cl- which concentration increases with certain primary and secondary soil salinization factors. So, primary aim to control the impact of soil salinity is to reduce the activity/concentration of both Na+ and Cl- from the soil. So, use of the essential nutrients (K+ and SO4-2) that has an antagonistic relationship with the salts is a new approach. Due to similar charge and physico chemical properties of K+ and SO4-2 with toxic ions Na+ and Cl- respectively, there lies an antagonistic relationship. Furthermore, SO4-2 of its less toxicity to plants and improve soil pH condition especially in arid and semi-arid region, the combination of K+ and SO4-2 salt is a good combination to ameliorate the Na+ and Cl- toxicity under saline soil.

Keywords

climate change land use change plant physiology potassium sulphate soil salinization salt stress water stress

Article Details

How to Cite
Sharma, A., Devi , Y. B., & Meetei, T. T. (2022). A review on impact of salt stress in soil health and its suitable control measure. Environment Conservation Journal, 23(3), 412–424. https://doi.org/10.36953/ECJ.12182325

References

  1. Abd El?Samad, H. M., & Shaddad, M. A. K. (1996). Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants. Journal of plant nutrition, 19(5), 717-728. DOI: https://doi.org/10.1080/01904169609365155
  2. Abdelraheem, A., Esmaeili, N., O’Connell, M., & Zhang, J. (2019). Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products, 130, 118-129. DOI: https://doi.org/10.1016/j.indcrop.2018.12.070
  3. Abou El Hassan, W. H., & Allam, A. (2017). Management of the integration between irrigation and drainage water in the Nile Delta. Unconventional Water Resources and Agriculture in Egypt, 17-24. DOI: https://doi.org/10.1007/698_2017_65
  4. Ahmadi, M., & Souri, M. K. (2018). Growth and mineral content of coriander (Coriandrum sativum L.) plants under mild salinity with different salts. Acta Physiologiae Plantarum, 40(11), 1-8. DOI: https://doi.org/10.1007/s11738-018-2773-x
  5. Akça, E., Aydin, M., Kapur, S., Kume, T., Nagano, T., Watanabe, T., & Zorlu, K. (2020). Long-term monitoring of soil salinity in a semi-arid environment of Turkey. Catena, 193, 104614. DOI: https://doi.org/10.1016/j.catena.2020.104614
  6. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. DOI: https://doi.org/10.1016/j.plaphy.2020.08.042
  7. Ashraf, M., Ahmad, R., Bhatti, A. S., Afzal, M., Sarwar, A., Maqsood, M. A., & Kanwal, S. (2010). Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere, 20(2), 153-162. DOI: https://doi.org/10.1016/S1002-0160(10)60003-3
  8. Bal, S. K., Sandeep, V. M., Kumar, P. V., Rao, A. S., Pramod, V. P., Manikandan, N., ... & Bhaskar, S. (2022). Assessing impact of dry spells on the principal rainfed crops in major dryland regions of India. Agricultural and Forest Meteorology, 313, 108768. DOI: https://doi.org/10.1016/j.agrformet.2021.108768
  9. Bhardwaj, S., Khanna, D. R., Ruhela, M., Bhutiani, R., Bhardwaj, R., & Ahamad, F. (2020). Assessment of the soil quality of Haridwar Uttarakhand India: A comparative study. Environment Conservation Journal, 21(3), 155-164. DOI: https://doi.org/10.36953/ECJ.2020.21319
  10. Bernzen, A., Jenkins, J. C., & Braun, B. (2019). Climate change-induced migration in coastal Bangladesh? A critical assessment of migration drivers in rural households under economic and environmental stress. Geosciences, 9(1), 51. DOI: https://doi.org/10.3390/geosciences9010051
  11. Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., ... & Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36), 21994-22001. DOI: https://doi.org/10.1073/pnas.2001403117
  12. Celleri, C., Pratolongo, P., & Arena, M. (2022). Spatial and temporal patterns of soil salinization in shallow groundwater environments of the Bahía Blanca estuary: Influence of topography and land use. Land Degradation & Development. DOI: https://doi.org/10.1002/ldr.4162
  13. Chartzoulakis, K., Psarras, G., Vemmos, S., Loupassaki, M., & Bertaki, M. (2006). Response of two olive cultivars to salt stress and potassium supplement. Journal of plant nutrition, 29(11), 2063-2078. DOI: https://doi.org/10.1080/01904160600932682
  14. Chen, L., Li, C., Feng, Q., Wei, Y., Zhao, Y., Zhu, M., & Deo, R. C. (2019). Direct and indirect impacts of ionic components of saline water on irrigated soil chemical and microbial processes. Catena, 172, 581-589. DOI: https://doi.org/10.1016/j.catena.2018.09.030
  15. Choudhary, O. P., & Kharche, V. K. (2018). Soil salinity and sodicity. Soil science: an introduction, 12, 353-384.
  16. Daoud, B., Pawelzik, E., & Naumann, M. (2020). Different potassium fertilization levels influence water-use efficiency, yield, and fruit quality attributes of cocktail tomato—A comparative study of deficient-to-excessive supply. Scientia Horticulturae, 272, 109562. DOI: https://doi.org/10.1016/j.scienta.2020.109562
  17. Datta, K. S., Kumar, A., & Verma, S. K. (1994). Variations in growth and physiology of barley under chloride and sulphate salinity. Annals of Arid Zone, 33(4).
  18. Erdinç, Ç., Sönmez, F., Ekincialp, A., & ?ensoy, S. (2018). The Impact of Potassium Sulphate Application on Phaseolus vulgaris Plants Grown under Salt Stress. Fresenius Environmental Bulletin, 27, 9859-9867.
  19. Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., ... & Siddique, K. H. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118, 199-217. DOI: https://doi.org/10.1016/j.plaphy.2017.06.020
  20. Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1(1), 51-58. DOI: https://doi.org/10.1038/s41893-017-0006-8
  21. Forni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410(1), 335-356. DOI: https://doi.org/10.1007/s11104-016-3007-x
  22. Gao, Y., Li, D., & Chen, Y. (2012). Differentiation of carbonate, chloride, and sulfate salinity responses in tall fescue. Scientia horticulturae, 139, 1-7. DOI: https://doi.org/10.1016/j.scienta.2012.02.035
  23. Ghernaout, D. (2018). Increasing trends towards drinking water reclamation from treated wastewater. World Journal of Applied Chemistry, 3(1), 1-9. DOI: https://doi.org/10.11648/j.wjac.20180301.11
  24. Gopalakrishnan, T., & Kumar, L. (2021). Linking long-term changes in soil salinity to paddy land abandonment in Jaffna Peninsula, Sri Lanka. Agriculture, 11(3), 211. DOI: https://doi.org/10.3390/agriculture11030211
  25. Goyal, G., Yadav, A., & Dubey, G. (2021). Effect of Salt Stress on Soil Chemistry and Plant?Atmosphere Continuum (SPAC). Physiology of Salt Stress in Plants: Perception, Signalling, Omics and Tolerance Mechanism, 106-128. DOI: https://doi.org/10.1002/9781119700517.ch7
  26. Guntukula, R. (2020). Assessing the impact of climate change on Indian agriculture: evidence from major crop yields. Journal of Public Affairs, 20(1), e2040. DOI: https://doi.org/10.1002/pa.2040
  27. Guo, R., Shi, L., Yan, C., Zhong, X., Gu, F., Liu, Q., & Li, H. (2017). Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biology, 17(1), 1-13. DOI: https://doi.org/10.1186/s12870-017-0994-6
  28. Hafez, E. M., Omara, A. E. D., Alhumaydhi, F. A., & El?Esawi, M. A. (2021). Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiologia Plantarum, 172(2), 587-602. DOI: https://doi.org/10.1111/ppl.13261
  29. Haj-Amor, Z., & Bouri, S. (2019). Use of HYDRUS-1D–GIS tool for evaluating effects of climate changes on soil salinization and irrigation management. Archives of Agronomy and Soil Science. DOI: https://doi.org/10.1080/03650340.2019.1608438
  30. Haj-Amor, Z., Dhaouadi, L., Kim, D. G., Anlauf, R., Mokadem, N., & Bouri, S. (2020). Effects of climate change on key soil characteristics and strategy to enhance climate resilience of smallholder farming: an analysis of a pomegranate-field in a coastal Tunisian oasis. Environmental Earth Sciences, 79(19), 1-16. DOI: https://doi.org/10.1007/s12665-020-09222-w
  31. Hayat, K., Bundschuh, J., Jan, F., Menhas, S., Hayat, S., Haq, F., ... & Zhou, P. (2020). Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 50(11), 1085-1115. DOI: https://doi.org/10.1080/10643389.2019.1646087
  32. Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., ... & Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1-43. DOI: https://doi.org/10.1890/ES14-00534.1
  33. Hobbs, R. J., Higgs, E., & Harris, J. A. (2009). Novel ecosystems: implications for conservation and restoration. Trends in ecology & evolution, 24(11), 599-605. DOI: https://doi.org/10.1016/j.tree.2009.05.012
  34. Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate change and agriculture, 13. DOI: https://doi.org/10.5772/intechopen.87982
  35. Hussain, Z., Khattak, R. A., Irshad, M., Mahmood, Q., & An, P. (2016). Effect of saline irrigation water on the leachability of salts, growth and chemical composition of wheat (Triticum aestivum L.) in saline-sodic soil supplemented with phosphorus and potassium. Journal of soil science and plant nutrition, 16(3), 604-620. DOI: https://doi.org/10.4067/S0718-95162016005000031
  36. Irakoze, W., Quinet, M., Prodjinoto, H., Rufyikiri, G., Nijimbere, S., & Lutts, S. (2022). Differential effects of sulfate and chloride salinities on rice (Oryza sativa L.) gene expression patterns: A comparative transcriptomic and physiological approach. Current Plant Biology, 29, 100237. DOI: https://doi.org/10.1016/j.cpb.2022.100237
  37. Islam, M. A., Hoque, M. A., Ahmed, K. M., & Butler, A. P. (2019). Impact of climate change and land use on groundwater salinization in southern Bangladesh—Implications for other Asian deltas. Environmental Management, 64(5), 640-649. DOI: https://doi.org/10.1007/s00267-019-01220-4
  38. Jan, A. U., Hadi, F., Nawaz, M. A., & Rahman, K. (2017). Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 116, 139-149. DOI: https://doi.org/10.1016/j.plaphy.2017.05.008
  39. Jangra, M., Devi, S., Kumar, N., Goyal, V., & Mehrotra, S. (2022). Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L. Applied biochemistry and biotechnology, 1-24. DOI: https://doi.org/10.1007/s12010-022-03853-4
  40. Javed, S. A., Shahzad, S. M., Ashraf, M., Kausar, R., Arif, M. S., Albasher, G., & Shakoor, A. (2022). Interactive effect of different salinity sources and their formulations on plant growth, ionic homeostasis and seed quality of maize. Chemosphere, 291, 132678.
  41. Javed, S. A., Shahzad, S. M., Ashraf, M., Kausar, R., Arif, M. S., Albasher, G., & Shakoor, A. (2022). Interactive effect of different salinity sources and their formulations on plant growth, ionic homeostasis and seed quality of maize. Chemosphere, 291, 132678. DOI: https://doi.org/10.1016/j.chemosphere.2021.132678
  42. Jungers, J. M., Kaiser, D. E., Lamb, J. F., Lamb, J. A., Noland, R. L., Samac, D. A., ... & Sheaffer, C. C. (2019). Potassium fertilization affects alfalfa forage yield, nutritive value, root traits, and persistence. Agronomy Journal, 111(6), 2843-2852. DOI: https://doi.org/10.2134/agronj2019.01.0011
  43. Kausar, A., & Gull, M. (2014). Effect of potassium sulphate on the growth and uptake of nutrients in wheat (Triticum aestivum L.) under salt stressed conditions. Journal of Agricultural Science, 6(8), 101. DOI: https://doi.org/10.5539/jas.v6n8p101
  44. Kaya, C., Higgs, D., & Ikinci, A. (2002). An experiment to investigate ameliorative effects of potassium sulphate on salt and alkalinity stressed vegetable crops. Journal of plant nutrition, 25(11), 2545-2558. DOI: https://doi.org/10.1081/PLN-120014712
  45. Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environment, Development and Sustainability, 23(1), 23-43. DOI: https://doi.org/10.1007/s10668-020-00589-1
  46. Li, X., Xia, J., Zhao, X., & Chen, Y. (2019). Effects of planting Tamarix chinensis on shallow soil water and salt content under different groundwater depths in the Yellow River Delta. Geoderma, 335, 104-111. DOI: https://doi.org/10.1016/j.geoderma.2018.08.017
  47. Ma, T., Chen, K., He, P., Dai, Y., Yin, Y., Peng, S., & Huang, J. (2022). Sunflower Photosynthetic Characteristics, Nitrogen Uptake, and Nitrogen Use Efficiency under Different Soil Salinity and Nitrogen Applications. Water, 14(6), 982. DOI: https://doi.org/10.3390/w14060982
  48. Mahlooji, M., Seyed Sharifi, R., Razmjoo, J., Sabzalian, M. R., & Sedghi, M. (2018). Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica, 56(2), 549-556. DOI: https://doi.org/10.1007/s11099-017-0699-y
  49. Minhas, P. S., Ramos, T. B., Ben-Gal, A., & Pereira, L. S. (2020). Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, 227, 105832. DOI: https://doi.org/10.1016/j.agwat.2019.105832
  50. Moharana, P. C., Singh, R. S., Singh, S. K., Tailor, B. L., Jena, R. K., & Meena, M. D. (2019). Development of secondary salinity and salt migration in the irrigated landscape of hot arid India. Environmental Earth Sciences, 78(15), 1-11. DOI: https://doi.org/10.1007/s12665-019-8460-4
  51. Munir, A., Shehzad, M. T., Qadir, A. A., Murtaza, G., & Khalid, H. I. (2019). Use of potassium fertilization to ameliorate the adverse effects of saline-sodic stress condition (ECw: SARw Levels) in rice (Oryza Sativa L.). Communications in Soil Science and Plant Analysis, 50(16), 1975-1985. DOI: https://doi.org/10.1080/00103624.2019.1648657
  52. Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., & Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(1), 88-97. DOI: https://doi.org/10.1080/11263504.2018.1461701
  53. Navarro, J. M., Garrido, C., Carvajal, M., & Martinez, V. (2002). Yield and fruit quality of pepper plants under sulphate and chloride salinity. The Journal of Horticultural Science and Biotechnology, 77(1), 52-57. DOI: https://doi.org/10.1080/14620316.2002.11511456
  54. Naz, T., Mazhar Iqbal, M., Tahir, M., Hassan, M. M., Rehmani, M. I. A., Zafar, M. I., ... & Sakran, M. I. (2021). Foliar Application of Potassium Mitigates Salinity Stress Conditions in Spinach (Spinacia oleracea L.) through Reducing NaCl Toxicity and Enhancing the Activity of Antioxidant Enzymes. Horticulturae, 7(12), 566. DOI: https://doi.org/10.3390/horticulturae7120566
  55. Phogat, V., Mallants, D., Cox, J. W., Šim?nek, J., Oliver, D. P., Pitt, T., & Petrie, P. R. (2020). Impact of long-term recycled water irrigation on crop yield and soil chemical properties. Agricultural Water Management, 237, 106167. DOI: https://doi.org/10.1016/j.agwat.2020.106167
  56. Pulido-Bosch, A., Rigol-Sanchez, J. P., Vallejos, A., Andreu, J. M., Ceron, J. C., Molina-Sanchez, L., & Sola, F. (2018). Impacts of agricultural irrigation on groundwater salinity. Environmental earth sciences, 77(5), 1-14. DOI: https://doi.org/10.1007/s12665-018-7386-6
  57. Rafik, A., Ibouh, H., El Alaoui El Fels, A., Eddahby, L., Mezzane, D., Bousfoul, M., ... & Chehbouni, A. (2022). Soil Salinity Detection and Mapping in an Environment under Water Stress between 1984 and 2018 (Case of the Largest Oasis in Africa-Morocco). Remote Sensing, 14(7), 1606. DOI: https://doi.org/10.3390/rs14071606
  58. Rahman, M. M., Shahrivar, A. A., Hagare, D., & Maheshwari, B. (2022). Impact of Recycled Water Irrigation on Soil Salinity and Its Remediation. Soil Systems, 6(1), 13. DOI: https://doi.org/10.3390/soilsystems6010013
  59. Rawat, S., Khanduri, V. P., Singh, B., Riyal, M. K., Thakur, T. K., Kumar, M., & Cabral-Pinto, M. M. (2022). Variation in carbon stock and soil properties in different Quercus leucotrichophora forests of Garhwal Himalaya. Catena, 213, 106210. DOI: https://doi.org/10.1016/j.catena.2022.106210
  60. Reich, M., Aghajanzadeh, T., Helm, J., Parmar, S., Hawkesford, M. J., & De Kok, L. J. (2017). Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant and Soil, 411(1), 319-332. DOI: https://doi.org/10.1007/s11104-016-3026-7
  61. S Taha, R., Seleiman, M. F., Alotaibi, M., Alhammad, B. A., Rady, M. M., & HA Mahdi, A. (2020). Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy, 10(11), 1741. DOI: https://doi.org/10.3390/agronomy10111741
  62. Seydehmet, J., Lv, G. H., Nurmemet, I., Aishan, T., Abliz, A., Sawut, M., & Eziz, M. (2018). Model prediction of secondary soil salinization in the Keriya Oasis, Northwest China. Sustainability, 10(3), 656. DOI: https://doi.org/10.3390/su10030656
  63. Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to soil salinity, sodicity and diagnostics techniques. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 1-42). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-96190-3_1
  64. Swaminathan, M. S. (1972). Agriculture cannot wait. Current Science, 41(16), 583-585.
  65. Turk, K. G. B., & Aljughaiman, A. S. (2020). Land use/land cover assessment as related to soil and irrigation water salinity over an oasis in arid environment. Open Geosciences, 12(1), 220-231. DOI: https://doi.org/10.1515/geo-2020-0103
  66. Tuteja, N. K., Beale, G., Dawes, W., Vaze, J., Murphy, B., Barnett, P., & Miller, M. (2003). Predicting the effects of landuse change on water and salt balance—a case study of a catchment affected by dryland salinity in NSW, Australia. Journal of Hydrology, 283(1-4), 67-90. DOI: https://doi.org/10.1016/S0022-1694(03)00236-1
  67. Tzortzakis, N. G. (2009). Alleviation of salinity-induced stress in lettuce growth by potassium sulphate using nutrient film technique. International Journal of Vegetable Science, 15(3), 226-239. DOI: https://doi.org/10.1080/19315260902751320
  68. Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline?sodic conditions. Journal of Plant Nutrition and Soil Science, 176(3), 344-354. DOI: https://doi.org/10.1002/jpln.201200417
  69. Wang, Y., & Li, Y. (2013). Land exploitation resulting in soil salinization in a desert–oasis ecotone. Catena, 100, 50-56. DOI: https://doi.org/10.1016/j.catena.2012.08.005
  70. Wang, Z., Zhang, F., Zhang, X., Chan, N. W., Kung, H. T., Zhou, X., & Wang, Y. (2020). Quantitative evaluation of spatial and temporal variation of soil salinization risk using GIS-based geostatistical method. Remote Sensing, 12(15), 2405. DOI: https://doi.org/10.3390/rs12152405
  71. Yan, B., Sun, Y. Y., & Wei, Y. (2020). Potassium–calcium antagonistic interaction under tomato magnesium deficiency and magnesium fertiliser regulation in solar greenhouse. Quality Assurance and Safety of Crops & Foods, 12(3), 76-86. DOI: https://doi.org/10.15586/qas.v12i3.723
  72. Yang, C. W., Xu, H. H., Wang, L. L., Liu, J., Shi, D. C., & Wang, D. L. (2009). Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 47(1), 79-86. DOI: https://doi.org/10.1007/s11099-009-0013-8
  73. Yang, X. D., Ali, A., Xu, Y. L., Jiang, L. M., & Lv, G. H. (2019). Soil moisture and salinity as main drivers of soil respiration across natural xeromorphic vegetation and agricultural lands in an arid desert region. Catena, 177, 126-133. DOI: https://doi.org/10.1016/j.catena.2019.02.015
  74. Yoshida, K., Sritumboon, S., Srisutham, M., Homma, K., Maki, M., & Oki, K. (2021). Climate change impact on soil salt accumulation in Khon Kaen, Northeast Thailand. Hydrological Research Letters, 15(4), 92-97. DOI: https://doi.org/10.3178/hrl.15.92
  75. Yousuf, P. Y., Ahmad, A., Hemant Ganie, A. H., Aref, I. M., & Iqbal, M. U. H. A. M. M. A. D. (2015). Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed Indian mustard (Brassica juncea) plants. Pakistan Journal of Botany, 47(5), 1629-1639.
  76. Yu, P., Liu, S., Yang, H., Fan, G., & Zhou, D. (2018). Short-term land use conversions influence the profile distribution of soil salinity and sodicity in northeastern China. Ecological Indicators, 88, 79-87.
  77. Yu, P., Liu, S., Yang, H., Fan, G., & Zhou, D. (2018). Short-term land use conversions influence the profile distribution of soil salinity and sodicity in northeastern China. Ecological Indicators, 88, 79-87. DOI: https://doi.org/10.1016/j.ecolind.2018.01.017
  78. Zewdu, S., Suryabhagavan, K. V., & Balakrishnan, M. (2016). Land-use/land-cover dynamics in Sego Irrigation Farm, southern Ethiopia: A comparison of temporal soil salinization using geospatial tools. Journal of the Saudi Society of Agricultural Sciences, 15(1), 91-97. DOI: https://doi.org/10.1016/j.jssas.2014.03.003
  79. Zhang, H. H., Xu, N., Wu, X., Wang, J., Ma, S., Li, X., & Sun, G. (2018). Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. Journal of Plant Interactions, 13(1), 506-513. DOI: https://doi.org/10.1080/17429145.2018.1526978
  80. Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The innovation, 1(1), 100017. DOI: https://doi.org/10.1016/j.xinn.2020.100017
  81. Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant biology, 21, 31-38. DOI: https://doi.org/10.1111/plb.12884