Main Article Content


Natural waters are degraded either by contaminants or pollutants. Contaminants are synthetic compounds which cause degradation of water quality, even when present in minute residues. They include pesticides, heavy metals, Poly Chlorinated Biphenyl’s, Poly Aromatic Hydrocarbons, plastics etc. On the other hand, pollution precisely refers to the increase in nitrates and phosphates in water body. Aquatic macrophytes, besides their role in the food chains, play significant part in mitigating both pollutant and contaminant levels. Their uptake and sequestration of nitrates, phosphates and heavy metals is well documented and published in worldwide. This paper reviews the efficacy of different macrophytes in freshwater ecosystems for uptake of pollutants and contaminants. It will provide an insight for policy makers in efficient mitigation of pollution levels in the water body.


Aquatic Contaminant Pollutant Removal Sequestration

Article Details

How to Cite
Qayoom, I., & Jaies, I. (2023). Phytoremediation potential of macrophytes against heavy metals, nitrates and phosphates: A review. Environment Conservation Journal, 24(1), 273–280.


  1. Akpor, O. B., &Muchie, M. (2010). Remediation of heavy metals in drinking water and wastewater treatment systems:
  2. processes and applications. International Journal of Physical Sciences, 5(12), 1807-1817.
  3. Alvarado, S., Guedez, M., Lue-Meru, M.P., Nelson, G., Alvaro, A., Jesus, A.C., &Gyula, Z. (2008).Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhorniacrassipes) and lesser duckweed (Lemna minor). Bioresource Technology, 99(17), 8436-8440. DOI:
  4. Axtell, N.R, Sternberg, S.P.K., &Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresourse Technology, 89(1), 41-48. DOI:
  5. Bhutiani, R., Ahamad, F., & Ruhela, M. (2021). Effect of composition and depth of filter-bed on the efficiency of Sand-intermittent-filter treating the Industrial wastewater at Haridwar, India. Journal of Applied and Natural Science, 13(1), 88-94. DOI:
  6. Bhutiani, R., Khanna, D. R., Shubham, K., & Ahamad, F. (2016). Physico-chemical analysis of Sewage water treatment plant at Jagjeetpur Haridwar, Uttarakhand. Environment Conservation Journal, 17(3), 133-142. DOI:
  7. Bhutiani, R., Rai, N., Kumar, N., Rausa, M., & Ahamad, F. (2019a). Treatment of industrial waste water using Water hyacinth (Eichornia crassipus) and Duckweed (Lemna minor): A Comparative study. Environment Conservation Journal, 20(1&2), 15-25. DOI:
  8. Bhutiani, R., Rai, N., Sharma, P. K., Rausa, K., & Ahamad, F. (2019b). Phytoremediation efficiency of water hyacinth (E. crassipes), canna (C. indica) and duckweed (L. minor) plants in treatment of sewage water. Environment Conservation Journal, 20(1&2), 143-156. DOI:
  9. Bhutiani, R., Tiwari, R. C., Chauhan, P., Ahamad, F., Sharma, V. B., Tyagi, I., & Singh, P. (2022). Potential of Cassia fistula pod-based absorbent in remediating water pollutants: An analytical study. In Sustainable Materials for Sensing and Remediation of Noxious Pollutants (pp. 261-272). Elsevier. DOI:
  10. Bokhari, S.H., Ahmad, I., Mahmood-Ul-Hassan, M.,& Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals. International journal of phytoremediation, 18(1), 25-32. DOI:
  11. Boonyapookana, B., Upatham, E.S., Kruatrachue, M., Pokethitiyook, P.,& Singhakaew, S. (2002). Phyoaccumulation and phytotoxicity of Cd and Cr in duckweed Wolffia globosa. International Journal of Phytoremediation, 4(2), 87-100. DOI:
  12. Brankovi´c, S., Pavlovi´c-Muratspahi´c, D., Topuzovi´c, M., Gliši´c, R., Milivojevi´c, J.,&Deki´c,V. (2012). Metals concentration and accumulation in several aquatic macrophytes.Biotechnology &Biotechnological equipments , 26, 2731–2736. DOI:
  13. Bunluesin, B., Krauatrache, M., Pokethitiyook, P., Lanza, G.R., Upatham, E.S., & Soonthornsarathool, V. (2004). Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation. Bulletin of Environmental Contamination and Toxicology, 73(3), 591-598. DOI:
  14. Burges, A., Alkorta, I., Epelde, L., & Garbisu, C. (2018). From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Jounal of Phytoremediation,20(4), 384–397. DOI:
  15. Carbonell-Barrachina, A.A., Aarabi, M.A., Delaune, R.D., Gambrell, R.P.,& Patrick, W.H. (1998). The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil, 198(1), 33-43. DOI:
  16. Charan, P.D., Ashwani, K.J., Mahendra, S., Karni, S.B., & Manjo, K.M. (2014). Analysis of some heavy metals in wastewater irrigated vegetables grown in Bikaner city, Rajasthan. Journal of Applied Phytotechnology in Environmental Sanitation, 3(1), 29-34.
  17. Chong, Y.X., Hu, H.Y., & Qian, Y. (2003).Advances in Utilization of Macrophytes in Water Pollution Control.Techniques and Equipment for Environmental Pollution Control, 4,36-40.
  18. DalCorso, G., Fasani, E., Manara, A., Visioli, G., & Furini, A. (2019). Heavy metal pollutions: state of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14), 3412. DOI:
  19. De Souza, M.P., Huang, C.P., Chee, N. & Terry, N. (1999). Rhizosphere bacteria enhance the accumulation of Se and Hg in wetland plants. Planta, 209(2), 259-263. DOI:
  20. Delgado, M., Bigeriego, M., & Guardiola, E. (1993).Uptake of Zn, Cr and Cd by water hyacinth. Water Research, 27(2), 269-272. DOI:
  21. Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia and Potamogeton pectinatus living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56(7), 685-696. DOI:
  22. Dhir, B., Sharmila, P., & Saradhi, P.P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39(9), 754-781. DOI:
  23. Donatus, M. (2016). Removal of heavy metals from industrial effluent using Salvinia molesta. International Journal of ChemTech Research, 9, 608-613.
  24. Eloy, G.G., Marta, R., Gertjan, M., Miquel, C., & Rosina, G. (2019).Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Research, 153, 91–99. DOI:
  25. Emiliani, J., LlatanceOyarce, W.G., Bergara, C.D., Salvatierra, L.M., Novo, L.A.,& Pérez, L.M. (2020). Variations in the phytoremediation efficiency of metal-polluted water with Salvinia biloba: prospects and toxicological impacts. Water, 12(6), 1737. DOI:
  26. Farago, M.E., & Parsons, P.J. (1994). The effects of various platinum metal species on the plant Eichhornia crassipes (MART) solms. Chemical Speciation & Bioavailabilty, 6(1), 1-12. DOI:
  27. Fernandesa, C., Fontainhas, F.A., Peixotoc, F., & Salgadod, M.A. (2007).Bioaccumulation of heavy metals in Liza saliens from the Esmoriz –Paramos coastal lagoon, Portugal. Ecotoxicology and Environmental Safety, 66(3),426–431. DOI:
  28. Hassanzadeh, M., Zarkami, R., &Sadeghi, R. (2021).Uptake and accumulation of heavy metals by water body and Azolla filiculoides in the Anzali wetland. Applied Water Science, 11(6): 1-8. DOI:
  29. Hejna, M., Moscatelli, A., Stroppa. N., Onelli, E., Pilu, S., Baldi, A., & Rossi, L.(2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018. DOI:
  30. Hoffmann, T., Kutter, C., & Santamria, J.M. (2004). Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Engineering in Life Sciences,4(1), 61-65. DOI:
  31. Hu, M.J., Wei, Y.L., Yang, Y.W., & Lee, J.F. (2003). Immobilization of chromium (VI) with debris of aquatic plants. Bulletin of Environmental Contamination and Toxicology, 71(4), 840-847. DOI:
  32. Huebert, D.B., & Shay, J.M. (1993). The response of Lemna trisulca L. to cadmium. Environmental Pollution, 80(3), 247-253. DOI:
  33. Ibrahim, S.M.A.G., Elsheikh, M.A., & Al-Solaimani, S.G. (2016).Phytoremediation of Toxic Heavy Metals by Potamogeton pectinatus (L.) Plant from Alasfar Lake Polluted with Wastewater in Al-Ahsa, Saudi Arabia.
  34. Jain, S.K., Vasudevan, P., & Jha, N.K. (1990). Azolla pinnata and Lemna minor for removal of lead and zinc from polluted water. Water Research, 24(2), 177-183. DOI:
  35. Kara, Y. (2005). Bioaccumulation of Cu, Zn and Ni from wastewater by treated Nasturtium officinale. International Journal of Environmental Science and Technology, 2(1), 63-67. DOI:
  36. Li, K., Liu, L., Yang, H., Zhang, C., Xie, H., & Li, C. (2016). Phytoremediation potential of three species of macrophytes for nitrate in contaminated water. American Journal of Plant Sciences, 7(8), 1259-1267. DOI:
  37. Low, K.S., Lee, C.K., & Tai, C.H. (1994).Biosorption of copper by water hyacinth roots. Journal of Environmental Science and Health, 29(1), 171-188. DOI:
  38. Maine, A,M., Sune, N.L. & Lagger, S.C. (2004). Bioaccumulation: Comparison of the capacity of two aquatic macrophytes. Water Research, 38(6), 1494-1501. DOI:
  39. Mateo-Sagasta, J., Zadeh, S.M., Turral, H., & Burke, J. (2017). Water pollution from agriculture: a global review. Food and Agriculture Organization of the United Nations, Rome and the International Water Management Institute on behalf of the Water Land and Ecosystems Research Program, Colombo.
  40. Matsuo, T. (2003). Japanese experiences of environmental management. Water Science and Technology, 47, 7-14. DOI:
  41. Miretzky, P., Saralegui, A., & Cirelli, A.F. (2004).Aquatic macrophytes potential for simultaneous removal of heavy metals (Buenos Aires, Argentine).Chemosphere,57(8), 997-1005. DOI:
  42. Mishra, V., & Tripathi, B.D. (2009).Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). Journal of Hazardous Materials, 164,1059-1063. DOI:
  43. Molisani, M.M., Rocha, R., Machado, W., Barreto, R.C. & Lacerda, I.D. (2006). Mercury contents in aquatic macrophytes from two Reservoirs in the para´ıba do sul: Guandu river system, Se, Brazil. Braz. Journal of Biology, 66, 101-107. DOI:
  44. Muarmoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bulletin of Environmental Contamination and Toxicology, 30(1), 170-177. DOI:
  45. Nazir, M.I., Idrees, I., Idrees, P., Ahmad, S., Ali, Q., & Malik, A. (2020).Potential of water hyacinth (Eichhornia crassipes L.) for phytoremediation of heavy metals from waste water. Biological and Clinical Sciences Research Journal, 1. DOI:
  46. Odjegba, V.J., & Fasidi, I.O. (2004). Accumulation of trace elements by Pistia stratiotes. Implications for phytoremediation. Ecotoxicology, 13(7), 637-646. DOI:
  47. Olguin, E.J., Hernandez, E., & Ramos, I. (2002). The effect of both different light conditions and pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium.Acta Scientific Biotechnology,1–2, 121-131. DOI:<121::AID-ABIO121>3.0.CO;2-F
  48. Pendias, H., & Pendias, K. (1989). Trace Elements in Soil and Plants. Boca Raton, FL, CRC.
  49. Qian, J.H., Zayed, A., Zhu, M.L., Yu, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants, III: Uptake and accumulation of ten trace elements by twelveplant species. Journal of Environmental Quality, 28(5), 1448-1455. DOI:
  50. Radic, S., Stipanicev, D., Cvjetko, P., Mikelic, I.L.,Rajcic, M.M., Sirac, S., Kozlina, B.P., & Pavlica, M. (2010).Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology, 19(1), 216–222. DOI:
  51. Rahmani, G.N.H., & Sternberg, S.P.K. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70(3), 225-230. DOI:
  52. Ruhela, M., Jena, B. K., Bhardwaj, S., Bhutiani, R., & Ahamad, F. (2021). Efficiency of Pistia stratiotes in the treatment of municipal solid waste leachate in an upwards flow constructed wetland system. Ecology Environment & Conservation 27 (February Suppl. Issue): 2021; pp. (S235-S244).
  53. Sen, A.K., Mondal, N.G., & Mondal, S. (1987). Studies of uptake and toxic effects of Cr (VI) on Pistia stratiotes. Water Science and Technology, 19(1-2), 119-127. DOI:
  54. Shafi, N., Pandit, A.K., Kamili, A.N., & Mushtaq, B. (2015). Heavy metal accumulation by Azolla pinnata of Dal Lake ecosystem. Indian Journal of Environmental Protection, 1, 8–12.
  55. Singh, M., Rai, U.N., Nadeem, U., & David, A.A. (2014). Role of Potamogeton Pectinatus in Phytoremediation of Metals. Chemical Science Review and Letters, 3, 123-129.
  56. Sinha, S., Gupta, M., & Chandra, P. (1994). Bioaccumulation and toxicity of Cu and Cd in Vallisneria spiralis (L.).Environmental Monitoring and Assessment, 33(1), 75-84. DOI:
  57. Sivaci, E.K., Sivaci, A., & Sokman, M. (2004). Biosorption of cadmium by Myriophyllum spicatum and Myriophyllum triphyllum orchard. Chemosphere, 56(11), 1043-1048. DOI:
  58. Srivastav, R.K., Gupta, S.K., Nigam, K.D.P., & Vasudevan, P. (1994). Treatment of chromium and nickel in wastewater by using plants.Water Research, 28(7), 1631-1638. DOI:
  59. Stepniewska, Z., Bennicelli, R.P., Balakhina, T.I., Szajnocha, K., Banach, A.M., & Wolinska, A. (2005). Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters.
  60. Tantawy, A.A., Ahmed, M.S., Mohamed, E.S.R., & Mahmoud, H.A. (2017). Potential of Azolla pinnata for removal of cadmium from wastewater by phytoremediation.
  61. Tripathi, R.D., & Chandra, P. (1991). Chromium uptake by Spirodela polyrhiza (L.) Schleiden in relation to metal chelators and pH. Bulletin Environmental Contamination and Toxicology, 47(5), 764-769. DOI:
  62. Tukura, B.W., Kagbu, J.A., & Gimba, C.E. (2009). Effects of pH and seasonal variations on dissolved and suspended heavy metals in dam surface water. Chemistry Class Jounal, 6, 27–30.
  63. Upatham, E.S., Boonyapookana, B., Kruatrachue, M., Pokethitiyook, P., & Parkpoomkamol, K. (2002). Biosorption of cadmium and chromium in duckweed Wolffia globosa. International Journal of Phytoremediation, 4(2), 73-86. DOI:
  64. Vesk, P.A., Nockold, C.E., & Allaway, W.G. (1999). Metal localization in water hyacinth roots from an urban wetland. Plant, Cell and Environment,22(2), 149-158. DOI:
  65. Wu, Z.B., Qiu, D.R., He, F., Fu, G.P., Cheng, S.P., & Ma, J.M. (2003). Effects of Rehabilitation of Submerged Macrophytes on Nutrient Level of a Eutrophic Lake.Chinese Journal of Applied Ecology, 14, 1352-1353.
  66. Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. DOI:
  67. Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants, I: Duckweed. Journal of Environmental Quality, 27(3), 715-721. DOI:
  68. Zhu, Y.L., Zayed, A.M., Qian, J.H., Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants. II Water hyacinth (Eichhornia crassipes). Journal of Environmental Quality, 28(1), 339-344. DOI: