Main Article Content


Entomopathogenic nematodes (EPNs) have been identified as promising biocontrol agents for controlling economically important insect pests of agricultural and horticultural crops. The compatibility of entomopathogenic nematode Heterorhabditis indica with 7 CIB registered insecticides was investigated under laboratory conditions. The effect of these insecticides on nematode survival at recommended concentrations was observed after 12, 24, 48, 72 hours upon direct exposure. EPN H. indica was compatible with Imidacloprid 17.8% SL as maximum per cent of live H. indica were observed after 72 h of exposure to this insecticide. Similarly, H. indica was compatible with Fipronil 5% SC up to 48 h of exposure whereas, less than 70% live EPN were there in Thiamethoxam 25% WG, Diafenthiuron 50% WP and Cypermethrin 25% EC resulting these insecticides to be least compatible.  Emamectin benzoate 5% SG and chlorpyriphos 20% EC were incompatible with H. indica after 48 h of exposure. The result of this experiment will help in reducing the dependence on chemical insecticides and thus slowing down the development of insecticide resistance and preventing adverse effects on public health and the environment.


Biocontrol Compatibility EPNs Heterorhabditis indica Imidacloprid Insecticide

Article Details

How to Cite
Dash, S. S., Koosari, S., Ingole, D. B., Kashyap, D. P., Tambe, V., & Lavhe, N. (2022). Compatibility studies of Heterorhabditis indica with newer insecticides under laboratory condition. Environment Conservation Journal, 23(3), 42–46.


  1. Alonso, V., Nasrolahi, S. & Dillman A.R. (2018). Host-specific activation of entomopathogenic nematode infective juveniles. Insects, 9(2), 59. DOI:
  2. Atwa, A. (1999). Interaction of certain insecticides and entomopathogenic nematodes in controlling some insect pests on fruit and vegetable crops. M. Sc. thesis, Faculty of Agriculture, University of Ain Shams at Shobra El.
  3. Baltazar, M.T., Dinis-Oliveira, R.J., de Lourdes Bastos, M., Tsatsakis, A.M., Duarte, J.A. & Carvalho, F. (2014). Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases-a mechanistic approach. Toxicology Letters, 230, 85-103. DOI:
  4. Chavan, S.N., Somasekhar, N. & Katti, G. (2018). Compatibility of entomopathogenic nematode Heterorhabditis indica (Nematoda: Heterorhabditidae) with agrochemicals used in the rice ecosystem. Journal of Entomology and Zoology Studies, 6, 527-532.
  5. Ehlers, R.-U. & Hokkanen, H. (1996). Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp.): conclusions and recommendations of a combined OECD and COST workshop on scientific and regulatory policy issues. Biocontrol Science and Technology, 6, 295-302. DOI:
  6. Favari, L., López, E., Mart??nez-Tabche, L. & D?az-Pardo, E. (2002). Effect of insecticides on plankton and fish of Ignacio Ramirez reservoir (Mexico): a biochemical and biomagnification study. Ecotoxicology and Environmental Safety, 51, 177-186. DOI:
  7. Goerke, H., Weber, K., Bornemann, H., Ramdohr, S. & Plötz, J. (2004). Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota. Marine Pollution Bulletin, 48, 295-302. DOI:
  8. Hazir, S., Keskin, N., Stock, S. P., Kaya, H.K. & Özcan, S. (2003). Diversity and distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Turkey. Biodiversity & Conservation, 12, 375-386. DOI:
  9. Koppenhöfer, A.M., Cowles, R.S., Cowles, E.A., Fuzy, E.M. & Kaya, H.K. (2003). Effect of neonicotinoid synergists on entomopathogenic nematode fitness. Entomologia Experimentalis et Applicata, 106, 7-18. DOI:
  10. Lacey, L.A. & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44, 218.
  11. Negrisoli Jr, A.S., Garcia, M.S. & Negrisoli, C.R.B. (2010). Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection, 29, 545-549. DOI:
  12. Patil, J., Gowda, M.T. & Vijayakumar, R. (2017). Compatibility of Steinernema carpocapsae and Heterorhabditis indica with insecticides registered against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Biological Control, 31, 95-101. DOI:
  13. Priya, P. & Subramanian, S. (2008). Compatibility of entomopathogenic nematodes Heterorhabditis indica (Poinar, Karunakar and David) and Steinernema glaseri (Stainer) with insecticides. Journal of Biological Control, 22, 225-230.
  14. Sabarwal, A., Kumar, K. & Singh, R.P. (2018). Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environmental Toxicology and Pharmacology, 63, 103-114. DOI:
  15. Songbi, C. & Itamar, G. (2005). A novel method for long-term storage of the entomopathogenic nematode Steinernema feltiae at room temperature. Biological Control, 32(1), 104-110. DOI:
  16. Vorkamp, K., Riget, F., Glasius, M., Pécseli, M., Lebeuf, M. & Muir, D. (2004). Chlorobenzenes, chlorinated pesticides, coplanar chlorobiphenyls and other organochlorine compounds in Greenland biota. Science of The Total Environment, 331, 157-175. DOI:
  17. Zhou, S., Pan, Y., Zhang, L., Xue, B., Zhang, A. & Jin, M. (2018). Biomagnification and enantiomeric profiles of organochlorine pesticides in food web components from Zhoushan Fishing Ground, China. Marine Pollution Bulletin, 131, 602-610. DOI: