Main Article Content


Morphological parameters are linked with the hydrological behaviour of the watershed. It helps to understand different basin characteristics. Characterization of quantitative morphology and river basin analysis is the way to implement proper river basin planning and management of soil and water conservation measures. In the present study, Cartosat-1 Digital Elevation Model (DEM) was used in Geographic Information System (GIS) environment to determine the morphometric parameters (stream length, stream order, stream frequency, bifurcation ratio, form factor, drainage density, circulatory ratio, etc.) of the Ranikhola watershed of Sikkim state, India. The slope of a major portion of the watershed area was found to be less than 30% (42 km2) and has a drainage density of 0.585 km-1. The lower value of drainage density in the watershed indicates a relatively lower streams frequency over the watershed. The elongation ratio, form factor, and circulatory ratio were estimated as 0.665, 0.347, and 0.510, respectively, which indicate that the watershed is elongated in shape, having gentle slopes and long flow paths. The relief ratio for the watershed was estimated to be 0.187, which indicates the watershed has a low elevation difference, low runoff, and high groundwater potential. This kind of morphometric analysis is required for the watershed characterization and helps to understand the hydrogeological behavior of the watershed.


Cartosat-1 Digital Elevation Model (DEM) GIS Morphology Watershed

Article Details

Author Biographies

Nirmalya Kumar Nath, Department of Soil and Water Engineering, CTAE, MPUAT, Udaipur, India.

Reserach scholar  at Department of Soil & Water Engineering, CTAE, MPUAT, Udaipur, 313001, India

Abhishek Agrawal, Department of Soil and Water Engineering, CTAE, MPUAT, Udaipur, India

Reserach scholar at Department of Soil & Water Engineering, CTAE, MPUAT, Udaipur, 313001, India

Abhinav Kumar, Department of Soil and Water Engineering, CTAE, MPUAT, Udaipur, India

Reserach scholar at Department of Soil & Water Engineering, CTAE, MPUAT, Udaipur, 313001, India

Pritam Das, Department of Soil and Water Engineering, CTAE, MPUAT, Udaipur, India

Reserach scholar at Department of Soil & Water Engineering, CTAE, MPUAT, Udaipur, 313001, India

How to Cite
Nath, N. K., Agrawal, A., Gautam, V. K., Kumar, A., & Das, P. (2022). Morphometric evaluation of Ranikhola watershed in Sikkim, India using geospatial technique. Environment Conservation Journal, 23(3), 273–284.


  1. Abdeta, G. C., Tesemma, A. B., Tura, A. L., & Atlabachew, G. H. (2020). Morphometric analysis for prioritizing sub-watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Applied Water Science, 10(7), 1-15. DOI:
  2. Ahamad, F., Bhutiani, R., & Ruhela, M. (2022). Environmental Quality Monitoring Using Environmental Quality Indices (EQI), Geographic Information System (GIS), and Remote Sensing: A Review. GIScience for the Sustainable Management of Water Resources Editors: Gowhar Meraj Shruti Kanga Majid Farooq Suraj Kumar Singh Sudhanshu, pp- DOI:
  3. Ahmed, S. A., Chandrashekarappa, K. N., Raj, S. K., Nischitha, V., & Kavitha, G. (2010). Evaluation of morphometric parameters derived from ASTER and SRTM DEM—a study on Bandihole sub-watershed basin in Karnataka. Journal of the Indian society of remote sensing, 38(2), 227-238. DOI:
  4. Amulya, T. H. M., & Nerlikar, D. (2018). Morphometric Analysis of Bettahalasuru Using GIS And Remot Sensing. International Journal Of Applied and Advanced Scientific Research, 3(1), 12-17.
  5. Bhattacharya, A. K., & Michael, A. M. (2006). Land drainage: principles, methods and applications. Vikas Publishing House.
  6. Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub-basin using remote sensing and GIS techniques. International Journal of geomatics and geosciences, 2(1), 311.
  7. Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS DOI:
  8. Clarke, J. I. (1966). Morphometry from maps. Essays in geomorphology, 235-274.
  9. Coates, C. (1958). General topological formulas for linear network functions. IRE Transactions on circuit theory, 5(1), 42-54. DOI:
  10. Dabrowskia, R., Fedorowicz-Jackowskia, W., Kedzierskib, M., Walczykowskib, P., & Zycha, J. Cartosat-1: Orientation, Dem And Orthorectification Quality Assesment.
  11. Dar, R. A., Chandra, R., & Romshoo, S. A. (2013). Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India. Journal of mountain science, 10(1), 1-15. DOI:
  12. Dikpal, R. L., Prasad, T. R., & Satish, K. (2017). Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India. Applied Water Science, 7(8), 4399-4414. DOI:
  13. Doornkamp, J. C., & King, C. A. (1971). Numerical analysis in geomorphology: an introduction. Hodder Education.
  14. Dubey, S. K., Sharma, D., & Mundetia, N. (2015). Morphometric analysis of the Banas River Basin using geographical information system, Rajasthan, India. Hydrology, 3(5), 47-57. DOI:
  15. Farhan, Y. (2016). Watershed prioritization based on morphometric analysis and soil loss modeling in Wadi Kerak (Southern Jordan) using GIS techniques. International Journal of Plant & Soil Science, 1-18. DOI:
  16. Gautam, V. K., Kothari, M., Singh, P. K., Bhakar, S. R., & Yadav, K. K. (2022). Decadal Groundwater Level Changes in Pratapgarh District of Southern Rajasthan, India. DOI:
  17. Gautam, V. K., Kothari, M., Singh, P. K., Bhakar, S. R., & Yadav, K. K. (2021). Determination of Geomorphological Characteristics of Jakham River Basin using GIS Technique. Indian Journal of Ecology, 48(6), 1627-1634.
  18. Gautam, V. K., Kothari, M., Singh, P. K., Bhakar, S. R., & Yadav, K.K. (2022). Analysis of groundwater level trending Jakham River Basin of Southern Rajasthan. Journal of Groundwater Science and Engineering, 10(1), 1-9. DOI:
  19. Gunjan, P., Mishra, S. K., Lohani, A. K., & Chandniha, S. K. (2020). The study of morphological characteristics for best management practices over the Rampur watershed of Mahanadi River Basin using prioritization. Journal of the Indian Society of Remote Sensing, 48(1), 35-45. DOI:
  20. Haan, C. T., Barfield, B. J., & Hayes, J. C. (1994). Design hydrology and sedimentology for small catchments. Elsevier.
  21. Hidore, J. J. (1965, February). Landform characteristics affecting watershed yields on the Mississippi-Missouri interfluve. In Proceedings of the Oklahoma Academy of Science (pp. 201-203).
  22. Horton, R. E. (1932). Drainage?basin characteristics. Eos, transactions american geophysical union, 13(1), 350-361. DOI:
  23. Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370. DOI:[275:EDOSAT]2.0.CO;2
  24. Khadri, S. F. R., & Moharir, K. (2013). Detailed morphometric analysis of Man River basin in Akola and Buldhana districts of Maharashtra, India using Cartosat-1 (DEM) data and GIS techniques. Int J Sci Eng Res, 4(11), 832-861.
  25. Leclerc, A., Chevalier, A., Luce, D., & Blanc, M. (1985). Analyses des correspondances et modèle logistique: possibilités et intérêt d'approches complémentaires. Revue de statistique appliquée, 33(1), 25-40.
  26. Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology wh freeman and company san francisco. California Google Scholar.
  27. Luchisheva A. A. 1950. Practical Hydrology. Gidrometeoizdat, Leningrad. (In Russian)
  28. Malik, A., Kumar, A., & Kandpal, H. (2019). Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arabian Journal of Geosciences, 12(4), 118. DOI:
  29. Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: a PCA-based approach. Applied Water Science, 7(3), 1505-1519. DOI:
  30. Meshram, S. G., Alvandi, E., Meshram, C., Kahya, E., & Al-Quraishi, A. M. F. (2020). Application of SAW and TOPSIS in prioritizing watersheds. Water Resources Management, 34(2), 715-732. DOI:
  31. Miller, V. C. (1953). A Quantitative Geomorphic Study of Drainage Basin Characteristics in The Clinch Mountain Area Virginia and Tennessee. Columbia University New York.
  32. Nag, S. K. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian society of remote sensing, 26(1), 69-76. DOI:
  33. Patel, A., Katiyar, S. K., & Prasad, V. (2016). Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS). The Egyptian Journal of Remote Sensing and Space Science, 19(1), 7-16. DOI:
  34. Rahmati, O., Kalantari, Z., Samadi, M., Uuemaa, E., Moghaddam, D. D., Nalivan, O. A., ... & Tien Bui, D. (2019). GIS-based site selection for check dams in watersheds: Considering geomorphometric and topo-hydrological factors. Sustainability, 11(20), 5639. DOI:
  35. Rai, P. K., Chaubey, P. K., Mohan, K., & Singh, P. (2017). Geoinformatics for assessing the inferences of quantitative drainage morphometry of the Narmada Basin in India. Applied Geomatics, 9(3), 167-189. DOI:
  36. Rao, N. K., Latha, S. P., Kumar, A. P., & Krishna, H. M. (2010). Morphometric analysis of Gostani river basin in Andhra Pradesh State, India using spatial information technology. International journal of geomatics and geosciences, 1(2), 179.
  37. Ratnam, K. N., Srivastava, Y. K., Rao, V. V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis—remote sensing and GIS perspective. Journal of the Indian society of remote sensing, 33(1), 25-38. DOI:
  38. Reddy, G. P. O., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India–a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1-16. DOI:
  39. Samal, D. R., Gedam, S. S., & Nagarajan, R. (2015). GIS based drainage morphometry and its influence on hydrology in parts of Western Ghats region, Maharashtra, India. Geocarto International, 30(7), 755-778. DOI:
  40. Sangma, F., & Guru, B. (2020). Watersheds characteristics and prioritization using morphometric parameters and fuzzy analytical hierarchal process (FAHP): a part of lower Subansiri sub-basin. Journal of the Indian Society of Remote Sensing, 48(3), 473-496. DOI:
  41. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America bulletin, 67(5), 597-646. DOI:[597:EODSAS]2.0.CO;2
  42. Schumm, S. A. (1963). Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74(9), 1089-1100. DOI:[1089:SOAROT]2.0.CO;2
  43. Schumm, S. A., & Hadley, R. F. (1961). Progress in the application of landform analysis in studies of semiarid erosion. DOI:
  44. Sharma, S. K., Gajbhiye, S., Nema, R. K., & Tignath, S. (2014). Assessing vulnerability to soil erosion of a watershed of tons river basin in Madhya Pradesh using remote sensing and GIS. Int J Environ Res Dev, 4(2), 153-164.
  45. Singh, A. P., Arya, A. K., & Singh, D. S. (2020). Morphometric analysis of Ghaghara river basin, India, Using SRTM Data and GIS. Journal of the Geological Society of India, 95(2), 169-178. DOI:
  46. Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655-668. DOI:
  47. Sreedevi, P. D., Subrahmanyam, K., & Ahmed, S. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3), 412-420. DOI:
  48. Srivastava, P. K. (2017). Satellite soil moisture: Review of theory and applications in water resources. Water Resources Management, 31(10), 3161-3176. DOI:
  49. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. DOI:
  50. Strahler, A. N. (1964). Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology: McGraw-Hill, New York, 4-39.
  51. Strahler, A. N. (1968). Quantitative geomorphology. The Encyclopedia of geomorphology, 898-912. DOI:
  52. techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531-539.
  53. Trivedi, A., Galkate, R. V., Gautam, V. K., & Pyasi, S. K. (2021). Development of RRL AWBM model and investigation of its performance, efficiency and suitability in Shipra River Basin. Journal of Soil and Water Conservation, 20(2), 160-167. DOI:
  54. Verstappen, H. (1983). The Applied Geomorphology, International Institute for Aerial Survey and Earth Science (ITC), Enschede. The Netherlands.
  55. Vincy, M. V., Rajan, B., & Pradeepkumar, A. P. (2012). Geographic information system-based morphometric characterization of sub-watersheds of Meenachil river basin, Kottayam district, Kerala, India. Geocarto International, 27(8), 661-684. DOI:
  56. Withanage, N. S., Dayawansa, N. D. K., & De Silva, R. P. (2014). Morphometric analysis of the Gal Oya River Basin using spatial data derived from GIS. Trop Agric Res, 26(1), 175-188. DOI:
  57. Yadav, S. K., Singh, S. K., Gupta, M., & Srivastava, P. K. (2014). Morphometric analysis of Upper Tons basin from Northern Foreland of Peninsular India using CARTOSAT satellite and GIS. Geocarto International, 29(8), 895-914. DOI: