Main Article Content

Abstract

A critical assessment of 32 maize hybrids with two replications for excessive soil moisture stress (ESM) was carried out during Kharif 2019-20. The plants were exposed to waterlogging stress for 12 days at the flowering stage by maintaining a water level of 3-5 cm. High genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were attained for maize plants with adventitious roots and senescence percentage after stress. High heritability along with high genetic advance was determined for number of plants with adventitious roots, senescence percentage, plant height and 100 kernel weight. Plant yield depicted a highly significant positive genotypic and phenotypic correlation with plant height, ear height, number of plants with adventitious roots and number of kernels per row, along with a significant negative correlation with senescence percentage. Kernels per row and plant height manifested the highest positive direct effect on plant yield at phenotypic and genotypic levels, respectively, reflecting that the characters can be considered for plant selection under ESM stress.

Keywords

ESM Hybrids Morphological parameters Zea mays

Article Details

How to Cite
Dash, S. S. S., Lenka, D., Sahoo, J. P., Tripathy, S. K., Samal, K. C., Lenka, D., & Swain, D. (2022). Morphological characterization of maize (Zea mays L.) hybrids under excessive soil moisture stress . Environment Conservation Journal, 23(3), 374–386. https://doi.org/10.36953/ECJ.10592252

References

  1. Al?Jibouri, H. A., Miller, P. A., & Robinson, H. F. (1958). Genotypic and environmental variances and covariances in an upland Cotton cross of interspecific origin 1. Agronomy journal, 50(10), 633-636. DOI: https://doi.org/10.2134/agronj1958.00021962005000100020x
  2. Awad-Allah, M. M., Elekhtyar, N. M., El-Abd, M. A. E. M., Abdelkader, M. F., Mahmoud, M. H., Mohamed, A. H., & Abdein, M. A. (2022). Development of New Restorer Lines Carrying Some Restoring Fertility Genes with Flowering, Yield and Grains Quality Characteristics in Rice (Oryza saliva L.). Genes, 13(3), 458. DOI: https://doi.org/10.3390/genes13030458
  3. Bartaula, S., Panthi, U., Timilsena, K., Acharya, S. S., & Shrestha, J. (2019). Variability, heritability and genetic advance of maize (Zea mays L.) genotypes. Research in Agriculture Livestock and Fisheries, 6(2), 163-169. DOI: https://doi.org/10.3329/ralf.v6i2.42962
  4. Begum, S., Ahmed, A., Omy, S. H., Rohman, M. M., & Amiruzzaman, M. (2016). Genetic variability, character association and path analysis in maize (Zea mays L.). Bangladesh Journal of Agricultural Research, 41(1), 173-182. DOI: https://doi.org/10.3329/bjar.v41i1.27682
  5. Belay, N. (2018). Genetic variability, heritability, correlation and path coefficient analysis for grain yield and yield component in maize (Zea mays L.) hybrids. Advances in Crop Science and Technology, 6(399), 1-9. DOI: https://doi.org/10.4172/2329-8863.1000399
  6. Bello, O. B., Abdulmaliq, S. Y., Afolabi, M. S., & Ige, S. A. (2010). Correlation and path coefficient analysis of yield and agronomic characters among open-pollinated maize varieties and their F1 hybrids in a diallel cross. African Journal of Biotechnology, 9(18), 2633-2639.
  7. Bello, O. B., Ige, S. A., Azeez, M. A., Afolabi, M. S., Abdulmaliq, S. Y., & Mahamood, J. (2012). Heritability and genetic advance for grain yield and its component characters in maize (Zea mays L.). International Journal of Plant Research, 2(5), 138-145. DOI: https://doi.org/10.5923/j.plant.20120205.01
  8. Campbell, M. T., Proctor, C. A., Dou, Y., Schmitz, A. J., Phansak, P., Kruger, G. R., & Walia, H. (2015). Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize. PloS one, 10(3), e0120385. DOI: https://doi.org/10.1371/journal.pone.0120385
  9. Dash, S. S. S., Lenka, D., Sahoo, J. P., Tripathy, S. K., Samal, K. C., Lenka, D., & Panda, R. K. (2022). Biochemical characterization of maize (Zea mays L.) hybrids under excessive soil moisture stress. Cereal Research Communications, 1-10. DOI: https://doi.org/10.1007/s42976-021-00241-2
  10. Dowswell, C. R., Paliwal, R. L., & Cantrell, R. P. (2019). Maize in the third world. CRC Press. https://doi.org/10.1201/9780429042171 DOI: https://doi.org/10.1201/9780429042171
  11. FAOSTAT. (2018). Food and Agricultural Organization of the United Nations (FAO), FAO Statistical Database. http://faostat.fao.org. Accessed on July 18 2020.
  12. Hefny, M. (2011). Genetic parameters and path analysis of yield and its components in corn inbred lines (Zea mays L.) at different sowing dates. Asian Journal of Crop Science, 3(3), 106-117. DOI: https://doi.org/10.3923/ajcs.2011.106.117
  13. Kaul J. (2011). Abiotic Stresses in Maize: Some Issues and Solutions, Directorate of Maize Research, Pusa Campus, Indian Council of Agricultural Research, pp. 16.
  14. Kavita, Kumar A, Kumar M and Kumari S. (2018). Morpho-physiological traits and yield of some promising maize (Zea mays L.) hybrids under waterlogging stress, International Journal of Advanced Biological Research, 8: 22-27.
  15. Khan M., Ahmad M, Hussain M & Ali Q (2018) Heritability and trait association studies in maize F1 hybrids, International Journal of Biosciences (IJB), 12: 18-26. DOI: https://doi.org/10.12692/ijb/12.1.18-26
  16. Khodarahmpour, Z. (2012). Morphological classification of maize (Zea mays L.) genotypes in heat stress condition. Journal of Agricultural Science, 4(5), 31. DOI: https://doi.org/10.5539/jas.v4n5p31
  17. Kumar, M. A., Choudhary, G., Garhwal, O. P., & Netwal, M. (2022). Correlation coefficient and path analysis for yield traits in coriander (Coriandrum sativum L.) genotypes. Electronic Journal of Plant Breeding, 13(1), 253-257. DOI: https://doi.org/10.37992/2022.1301.035
  18. Kumar, V., Singh, S. K., Bhati, P. K., Sharma, A., Sharma, S. K., & Mahajan, V. (2015). Correlation, path and genetic diversity analysis in maize (Zea mays L.). Environment & Ecology, 33(2A), 971-975.
  19. Lakshmi, M. S., Jagadev, P. N., Das, S., Lenka, D., Swain, D., & Tripathy, S. K. (2018). Genetic Variability and Association Analysis of Maize Hybrids under Excessive Soil Moisture Condition. Int. J. Curr. Microbiol. App. Sci, 7(9), 2935-2941.
  20. Lakshmi, M. S., Jagadev, P. N., Das, S., Lenka, D., Swain, D., & Tripathy, S. K. (2018). Genetic Variability and Association Analysis of Maize Hybrids under Excessive Soil Moisture Condition. Int. J. Curr. Microbiol. App. Sci, 7(9), 2935-2941. DOI: https://doi.org/10.20546/ijcmas.2018.709.365
  21. Lizaso, J. I., & Ritchie, J. T. (1997). Maize shoot and root response to root zone saturation during vegetative growth. Agronomy Journal, 89(1), 125-134. DOI: https://doi.org/10.2134/agronj1997.00021962008900010019x
  22. Lone, A. A., Warsi, M. Z. K., Nehvi, F. A., & Dar, S. A. (2010). Studies on Character Association in Winter Maize under Normal and Excess Soil Moisture (ESM) Conditions. Maize Genetics Cooperation Newsletter, 84.
  23. Mallikarjuna, N. M., Chandrashekhar, H., Shashibhaskar, M. S., & Prahalada, G. D. (2011). Genetic variability and correlation studies for yield and related characters in single cross hybrids of maize (Zea mays L.). Current Biotica, 5(2), 157-163.
  24. Nishad, C., Salam, J. L., Singh, S., & Singh, D. P. (2022). Studies of genetic variability in Indian mustard (Brassica juncea L. Czern and Coss). The Pharma Innovation Journal, 11(2), 261-263.
  25. Nzuve, F., Githiri, S., Mukunya, D. M., & Gethi, J. (2014). Genetic variability and correlation studies of grain yield and related agronomic traits in maize. Journal of Agricultural Science (Toronto), 6(9), 166-176. DOI: https://doi.org/10.5539/jas.v6n9p166
  26. Ogunniyan, D. J., & Olakojo, S. A. (2014). Genetic variation, heritability, genetic advance and agronomic character association of yellow elite inbred lines of maize (Zea mays L.). Nigerian Journal of Genetics, 28(2), 24-28. DOI: https://doi.org/10.1016/j.nigjg.2015.06.005
  27. Pandey Y, Vyas RP, Kumar J, Singh L, Singh HC, Yadav PC and Vishwanath. (2017) Heritability, Correlation and Path Coefficient Analysis for Determining Interrelationships among Grain Yield and Related Characters in Maize (Zea mays L). International Journal of Pure and Applied Bioscience, 5(2): 595-603.
  28. Patil, S. M., Kumar, K., Jakhar, D. S., Rai, A., Borle, U. M., & Singh, P. (2016). Studies on variability, heritability, genetic advance and correlation in maize (Zea mays L.). International Journal of Agriculture, Environment and Biotechnology, 9(6), 1103-1108. DOI: https://doi.org/10.5958/2230-732X.2016.00139.X
  29. Pavan, R., Lohithaswa, H. C., Wali, M. C., Prakash, G., & Shekara, B. G. (2011). Correlation and path coefficient analysis of grain yield and yield contributing traits in single cross hybrids of maize (Zea mays L.). Electronic Journal of Plant Breeding, 2(2), 253-257.
  30. Pooja, G. K., Adivappar, N., & Shivakumar, B. S. (2022). Correlation and path-coefficient analysis for yield and yield components of tamarind (Tamarindus indica L.) genotypes. Electronic Journal of Plant Breeding, 13(1), 262-266. DOI: https://doi.org/10.37992/2022.1301.037
  31. Rani UG, Rao VS, Ahmad ML and Rao N. (2017) Character association and path coefficient analysis of grain yield and yield components in maize (Zea mays L.), International Journal of Current Microbiology and Applied Sciences, 6(12): 4044 - 4050. DOI: https://doi.org/10.20546/ijcmas.2017.612.465
  32. Sahoo, J. P., Behera, L., Sharma, S. S., Praveena, J., Nayak, S. K., & Samal, K. C. (2020). Omics Studies and Systems Biology Perspective towards Abiotic Stress Response in Plants. American Journal of Plant Sciences, 11(12), 2172. DOI: https://doi.org/10.4236/ajps.2020.1112152
  33. Sasipriya, S., Parimala, K., Balram, M., & Eswari, K. B. (2022). Variability and character association in sesame (Sesamum indicum L.). The Pharma Innovation Journal, 11(1): 299-302.
  34. Sesay, S., Ojo, D. K., Ariyo, O. J., Meseka, S., Fayeun, L. S., Omikunle, A. O., & Oyetunde, A. O. (2017). Correlation and path coefficient analysis of top-cross and three-way cross hybrid maize populations. African Journal of Agricultural Research, 12(10), 780-789. DOI: https://doi.org/10.5897/AJAR2016.11997
  35. Shah, N. A., Srivastava, J. P., da Silva, J. A. T., & Shahi, J. P. (2012). Morphological and yield responses of maize (Zea mays L.) genotypes subjected to root zone excess soil moisture stress. Plant Stress, 6(1), 59-72.
  36. Shin, S., Kim, S. G., Jung, G. H., Kim, C. G., Son, B. Y., Kim, J. T., & Woo, M. O. (2016). Evaluation of waterlogging tolerance with the degree of foliar senescence at the early vegetative stage of maize (Zea mays L.). Journal of crop science and biotechnology, 19(5), 393-399. DOI: https://doi.org/10.1007/s12892-016-0097-1
  37. Siluveru S, Bharathi M, Reddy V and Eswari K. (2015) Genetic variability, heritability and genetic advance studies in maize (Zea mays L.), Ecology, Environment and Conservation, 21: S445-S449.
  38. Smalley, M. D., Daub, J. L., & Hallauer, A. R. (2004). Estimation of heritability in maize by parent-offspring regression. Maydica, 49(3), 221-229.
  39. Sravanti, K., Devi, I. S., Sudarshan, M. R., & Supriya, K. (2017). Evaluation of maize genotypes (Zea mays L.) for variability, heritability and genetic advance. International Journal of Current Microbiology and Applied Sciences, 6(10), 2227-2232. DOI: https://doi.org/10.20546/ijcmas.2017.610.263
  40. Tulu, B. N. (2014). Correlation and path coefficients analysis studies among yield and yield-related traits of quality protein maize (QPM) inbred lines. International Journal of Plant Breeding and Crop Science, 1(2), 006-017.
  41. Upadhyay and Kumar J. (2017) Heritability, correlation and path coefficient analysis for determining interrelationships among grain yield and related characters in maize (Zea mays L.), Indian Journal of Pure & Applied Biosciences, 5(2): 595-603. DOI: https://doi.org/10.18782/2320-7051.2921
  42. Zaidi, P. H., Rafique, S., Rai, P. K., Singh, N. N., and Srinivasan, G. (2004). Tolerance to excess moisture in maize (Zea mays L.): susceptible crop stages and identification of tolerant genotypes. Field Crops Research, 90(2-3), 189-202. DOI: https://doi.org/10.1016/j.fcr.2004.03.002
  43. Zaidi, P., Maniselvan, P., Sultana, R., Yadav, M., Singh, R., Singh, S., & Srinivasan, G. (2007). Importance of secondary traits in the improvement of maize (Zea mays L.) for enhancing tolerance to excessive soil moisture stress. Cereal Research Communications, 35(3), 1427-1435 DOI: https://doi.org/10.1556/CRC.35.2007.3.7