Strategies and methods for improving phosphorus acquisition and its use efficiency: A review

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Feb 1, 2022
Purushottam Dev
Sukhdev Singh Paliyal Mridula
Navjot Rana R.G. Upadhyay

Abstract

Phosphorus (P) is considered an essential nutrient for all and is also essential from global food security point of view but it is a limited, non-renewable nutrient resource, making its use vitally important. Nowadays, lower productivity in phosphorus availability is major concern. The decreasing ores and suboptimal levels of plant available phosphorus (P) can lead to lower yield. Its interaction with several other plant nutrients makes it very hard for plant availability. Several approaches have been tried and tested and many of them have been found effective, sustainable and cost efficient. However, the need for novel approaches for better phosphorus acquisition like physiological manipulation, better root structure and genetic alteration will help for resource conservation and is environmentally sustainable. But to diagnose environmental impact on excess use of phosphate fertilizers more improvement is required in order so that limited phosphorus stocks can be managed. Thus, there is a need for integrative approach to solve the lower P in soil system.

How to Cite

Dev, P. ., Paliyal, S. S., Mridula, Rana, N., & Upadhyay, R. (2022). Strategies and methods for improving phosphorus acquisition and its use efficiency: A review. Environment Conservation Journal. https://doi.org/10.36953/ECJ.021887-2153

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 3 | PDF Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

Environmental impact, Fertilizer, Fixation, Macronutrient, Sustainable

References
Ahmad, R., Khalid, A., Arshad, M., Zahir, Z.A., & Naveed, M. (2006). Effect of raw (un-composted) and composted organic waste material on growth and yield of maize (Zea mays L.). Soil Environment, 25 (2), 135– 142.
Akande, M.O., Adediran, J.A., & Oluwatohinbo, F.I. (2005). Effects of rock phosphate amended with poultry manure on soil available P and yield of maize and cowpea. African Journal of Biotechnology, 4(5), 444–448.
Amin, M.G.M., Bech, T.B., Forslund A., Hansen M., Petersen S.O., & Lægdsmand, M. (2014). Redistribution and persistence of microorganisms and steroid hormones after soil-injection of swine slurry. Science of the Total Environment, 1003-1010.
Araujo, A.S.F., Leite, L.F.C., Santos, V.B., & Carneiro, R.F.V. (2019). Soil microbial activity in conventional and organic agricultural systems. Sustainability, 1(2), 268–276.
Brady, N.C., & Weil, R.R. (2015). Soil Phosphorus and Potassium. The Nature and Property of Soils, 671-716.
Braum, S.M., & Helmke, P.A. (1995). White lupin utilizes soil phosphorus that is unavailable to soybean. Plant and Soil, 176(1), 95–100.
Carvalho, A. M. D., Bustamante, M. M. D. C., Almondes, Z. A. D. P., & Figueiredo, C. C. D. (2014). Forms of phosphorus in an oxisol under different soil tillage systems and cover plants in rotation with maize. Revista Brasileira de Ciência do Solo, 38, 972–979, https://doi.org/10.1590/s0100-06832014000300029
Cavigelli, M.A., & Thien, S.J. (2003). Phosphorus Bioavailability following Incorporation of Green Manure Crops. Soil Science Society of America, 1, 1186– 1194.
Cordell, D., Rosemarin, A., Schroder, J.J., & Smit, A.L. (2011). Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747–758.
Feng, G., Song, Y.C., Li, X.L., & Christie, P. (2003). Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 22(2), 139–148.
Fitter, A.H., Helgason, T., & Hodge, A. (2011). Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biological Review, 25(1), 68–72.
Franklin, D., Ozenç, D.B., Ozenç, N., & Cabrera, M. (2015). Nitrogen mineralization and phosphorus release from composts and soil conditioners found in the south-eastern united states. Soil Science Society America, 79(5), 1386.
Gahoonia, T. S., & Nielsen, N.E. (2004a). Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil, 262, 55–62.
Gaynor, J.D., & Findlay, W.I. (1995). Soil and phosphorus loss from conservation and conventional tillage in corn production. Journal of Environment Quality, 24, 734.
Geohring, L.D., McHugh, O.V., Walter, M.T., Steenhuis, T.S., Akhtar, M.S., & Walter, M.F. (2001). Phosphorus transport into drains by macropores after manure applications: Implication for best manure management practices. Soil Science, 166, 896–909.
Gokmen, S., & Sencar, O. (1999). Effect of phosphorus fertilizers and application methods on the yield of wheat grown under dryland conditions. Turkish Journal of Agricultural Forages, 23, 393-399.
Grant, C.A., Flaten, D.N., Tomasiewicz, D.J., & Sheppard, S.C. (2001). The importance of early season phosphorus nutrition. Canada Journal of Plant Sciences, 81, 211-224.
Guan, L.L., Onuki, H., & Kamino, K. (2000). Bacterial growth stimulation with exogenous siderophore and synthetic N-acylhomoserine lactone autoinducers under iron-limited and low-nutrient conditions. Applied Environment Microbiology, 66, 2797–803.
Gunes, A., Nizamettin, A., Metin, T., Ahmet, E., & Ketterings, Q.M. (2009). Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. Soil Science, 172, 385–392.
Habai, R., Nwakaego, V., Deusdedit, P., Odeh, I., Singh, A., & Buchan, D. (2016). Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology, 101, 185–193.
Haymann, D.S., & Mosse, B. (1971). Plant growth response to vesicular-arbuscular mycorrhiza. I. Growth of Endogone inoculated plants in phosphate deficient soils. New Phytologist, 70, 19-27.
Hinsinger, P. (2001). Bio-availability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant and Soil, 237, 173–195.
Hoffland, E., & Wissuwa, W.C. (2006). Organic acid exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant and Soil, 283, 155–162.
Hongqing, H., Chunying, T., Chongfa, C., Jizheng, H. & Xueyuan, L. (2001). Availability and residual effects of phosphate rocks and inorganic p fractionation in a red soil of central china. Nutrient Cycle, 59(3), 251–258.
Horst, W.J., Kamh, M., Jibrin, J.M., & Chude, V.O. (2011). Agronomic measures for increasing P availability to crops. Plant and Soil, 237(2), 211–223.
Jones, G.P.D., Blair, G.J., & Jessop, R.S. (1989). Phosphorus efficiency in wheat - a useful selection criteria. Field Crops Research, 21, 257-264.
Karamanos, R. (2017). The impact of phosphorus fertilizer placement on crop production. Agricultural Research & Technology, 125-132.
Khatiwada, R., Hettiarachchi, G.M., Mengel, D.B., & Fei, M. (2012). Speciation of phosphorus in a fertilized, reduced-till soil system: In-field treatment incubation study. Soil Science Society of America Journal, 176-185.
Kolawole. G.O., & Tian, G. (2007). Phosphorus fractionation and crop performance on an alfisol amended with phosphate rock combined with or without plant residues. African Journal of Biotechnology, 6(16), 1972–1978.
Kucey, M.E., Janzen H.H., & Leggett (1989). Microbially mediated increases in plant available phosphorus. Advances in Agronomy, 42(42), 199–221.
Kumar, V. (2011). Effect of different organic mulching materials on soil properties of na ‘7’ aonla (EMBLICA OFFICINALIS GAERTN) under rainfed condition of shivalik foothills of himalayas INDIA. The Bioscan, 9(1), 561-564.
Kwabiah, A.B., Stoskopf, N.C., Palm, C.A., Voroney, R.P., Rao, M.R., & Gacheru, E. (2003). Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short-term study in western Kenya. Agriculture Ecosystem Environment, 95(1), 49–59.
Lindsay, W.L., Vlek, P.L.G., & Chien, S.H. (1989). Phosphate minerals, in: Dixon J.B., Weed S.B., Soil environment, 2nd ed., Soil Science Society of America, 1089–1130.
Liu, X.E., Li, X.G., Guo, R.Y., Kuzyakov, Y., & Li, F.M. (2015). The effect of plastic mulch on the fate of urea-N in rain-fed maize production in a semiarid environment as assessed by 15N-labeling. European Journal of Agronomy, 70, 71-77.
Lynch, J.P. (2007). Roots of the second green revolution. Australian Journal of Botany, 55, 1-20.
Lynch, J.P., Brown, K.M. (2001). Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 237, 225–237.
Malhi, S.S., Haderlein, L.K., Pauly, D.G., & Johnston, A.M. (2002). Improving fertilizer phosphorus use efficiency. Better Crops, 86(4), 8–9.
Manske, G.G.B., Monasterio, J.I.O., Ginkel, M.V., Gonzalez, R.M., Rajaram, S., Molina, E., & Vlek, P.L.G. 2000. Traits associated with improved Puptake efficiency in CIMMYT's semidwarf spring bread wheat wheat grown on an acid andisol in Mexico. Plant and Soil, 22(1), 189-204.
McLachlan, K.D. (1980). Acid phosphatase activity of intact roots and phosphorus nutrition of plants. II. Variation among wheat roots. Australian Journal of Agricultural Research, 31, 441-448.
McLaughlin, M.J., McBeath, T.M., Smernik, R., Stacey, S.P., Ajiboye, B., & Guppy, C. (2011). The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: An Australian perspective. Plant Soil, 349(1–2), 69–87.
Medina, A., & Azcon, R. (2010). Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. Journal of soil Science, 10(3), 354–372.
Mollier, A., & Pellerin, S. (1999). Maize root system growth and development as influenced by P deficiency. Journal of Experimental Botany, 50, 487–497.
Mujeeb, F., Hannan, A., & Maqsood, M.A. (2017). Response of maize to diammonium phosphate and farmyard manure application on three different soils. Pakistan Journal of Agricultural Science, 45(3), 13–18.
Nelson, N.O., & Janke, R.R. (2007). ‘Phosphorus sources and management in organic production systems. Horttechnology, 17(4), 442–454.
Njeru, E.M., Avio, L., Sbrana, C., Turrini, A., Bocci, G., Bàrberi, P., & Giovannetti M. (2014). First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agronomy for Sustainable Development, 34(4), 841–848.
Norrish, K., & Rosser, H. (1983). Mineral phosphate, in: Soils, an Australian viewpoint, Academic press, Melbourne, CSIRO/London, UK, Australia, 335–361.
Nuruzzaman, M., Lambers, H., Bolland, M.D.A., & Veneklaas, E.J. (2005). Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant and Soil, 271(1–2), 175–187.
Ogbonna, D.N., Isirimah, N.O., & Princewill, E. (2014). Effect of organic wastes compost and microbial activity on the growth of maize in the utisoils in effect of organic waste compost and microbial activity on the growth of maize in the utisoils in Port Harcourt, Nigeria. African Journal of Biotechnology, 11, 62.
Rajmohan, N., & Elango, L. (2005). Nutrient chemistry of groundwater in an intensively irrigated region of southern India. Environmental Geology, 47, 820?830.
Randall, P.J. (1995). Genotypic differences in phosphate uptake. In: Genetic manipulation of crop plants to enhance integrated management in cropping systems. I. Phosphorus: Proceedings of an FAO/ ICRISAT Expert Consultancy Workshop Andhra Pradesh, India: International Crops Research Institute for the Semiarid Tropics, 31-47.
Reddy, K.S., Rao, A.S. & Takkar, P.N. (1995). Transformation of fertilizer P in a Vertisol amended with farmyard manure. Biological Fertilizer, 22, 279–282.
Rehim, A., Farooq, M., Ahmad, F., & Hussain, M. (2012). Band placement of phosphorus improves the phosphorus use efficiency and wheat productivity under different irrigation regimes. International Journal of Agriculture and Biology, 727-733.
Rehim, A., Hussain, M., Abid, M., Zia, M., & Ahmad, S., (2012). Phosphorus use efficiency of canola as affected by band placement of phosphorus and farmyard manure on calcareous soils. Pakistan Journal of Botany, 44, 1391-1398.
Reid, D.K. (2011). A modified Ontario P index as a tool for on farm phosphorus management. Canada Journal of Soil Science, 91(3), 455–466.
Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Ryan, M.H., Veneklaas, E.J., Lambers, H., Oberson, A., Culvenor, R.A., & Simpson, R.J. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349, 121–156.
Roger, E.D., & Benfey, P.N. (2015). Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology, 32, 93–98.
Rychel, K., Meurer, K.H.E., Borjesson, G., Stromgren, M., Getahun, G.T., Kirchmann, H., & Katterer, T. (2020). Deep N fertilizer placement mitigated N2O emissions in a Swedish field trial with cereals. Nutrient Cycling in Agroecosystems, 118, 133-148.
Simpson, R.J., Oberson, A., Culvenor, R.A, Ryan, M.H., Veneklaas, E.J., Lambers, H., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., & Richardson, A.E. (2011). Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Pakistan journal of agricultural research, 349(1–2).
Smith, K.A., Chalmers, A.G., Chambers, B.J., & Christie, P. (2000). Organic manure phosphorus accumulation, mobility and management. Soil Use Management, 14, 154–159.
Smith, S.E., & Smith, F.A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62(1), 227–250.
Sullivan, D.M., Bary, A.I., Nartea, T.J., Cogger, C.G., & Fransen, S.C. (2003). Nitrogen availability seven years after a high-rate food waste compost application. Compost Science & Utilization, 11(3), 265–275.
Thingstrup, I., Kahiluoto, H. & Jakobsen, I. (2000). Phosphate transport by hyphae of field communities of arbuscular mycorrhizal fungi at two levels of P fertilization. Plant and Soil, 221(2), 181–187.
Tian, G., & Kolawole, G.O. (2004). Comparison of various plant residues as phosphate rock amendment on savanna soils of west Africa. Journal of Plant Nutrition, 27(4), 571–583.
Ulen, B., Aronsson, H., Bechmann, M., Krogstad, T., Oygarden, L., & Stenberg, M. (2010). Soil tillage methods to control phosphorus loss and potential side-effects: A Scandinavian review. Soil Use Management, 26(2), 94–107.
Wang, F., Jiang, R., Kertesz, M.A., Zhang, F., & Feng, G. (2013). Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biology and Biochemistry, 65, 69–74.
Wang, X., Wang, G., Turner, N.C., Xing, Y., Li, M., & Guo, T. (2020). Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China. BMC Plant Biology, 20, 282.
Xomphoutheb, T., Jiao, S., Guo, X., Mabagala, F.S., Sui, B., Wang, H., Zhao, L., & Zhao, X. (2020). The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China. Scientific Reports, 10, 6574 https://doi.org/10.1038/s41598-020-63567-7
Section
Articles

Most read articles by the same author(s)