Antidiabetic Herbs and Polyherbal Strategies: A Dual Approach to Diabetes Control
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Pracheta Janmeda Hukum Singh Rahul Gaur
Km. Nargis
Chandra Kanta
Abstract
A complex metabolic disorder, Diabetes mellitus is connected with many difficulties, which requires the exploration of other therapeutic options with fewer side effects. Some selected traditional herbal plants, especially from Ayurveda and other ancient herbal systems, offer promising opportunities because of their miscellaneous phytochemical compositions and ancient use. The researcher has given more focus towards the application of the herbs including Tinospora cordifolia, Berberis aristata, and Momordica charantia, due to the presence of bioactive constituents like Berberine, Borapetoside-C, Dipeptidyl peptidase-IV (DPP-IV), 4-hydroxyisoleucine which have pharmacological actions or therapeutic potential against diabetes. The phytochemistry of the selected major antidiabetic herbs has been highlighted with their potential as an effective therapeutic agent. The major findings by the researchers show some mechanisms that are helpful in the management of diabetes, such as the presence of alkaloids in Gilloy has demonstrated the ability to lower blood glucose levels, with the magnoflorine from its stem, and the root extract of Berberis aristate shows an effective ability to decrease high blood sugar levels, regulating glucose balance by inhibiting gluconeogenesis. Herbal plants and polyherbal formulations offer positive paths in dealing with diabetes, including a lesser amount of side effects and cost-effectiveness. Further research on the phytochemical profiles and mechanisms of action of these selected herbs as well as clinical trials to validate their efficacy and safety are required to fully utilize their therapeutic potential in diabetes management.
How to Cite
Downloads
##plugins.themes.bootstrap3.article.details##
Antidiabetic herbs, diabetes mellitus, phytochemicals, polyherbal formulation, traditional medicine
Ahmad, A., Alghamdi, S. S., Mahmood, K., & Afzal, M. (2016). Fenugreek a multipurpose crop: Potentialities and improvements. Saudi journal of biological sciences, 23(2), 300-310. doi: https://doi.org/10.1016/j.sjbs.2015.09.015
Ahmad, m., khaleque, a., & miah, m. (1978). Structure of tinosporide, a new furanoid diterpene. Chemischer informationsdienst, 9(38). Doi: 10.1002/chin.197838300
Ahrén, B., & Hughes, T. E. (2005). Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice. Endocrinology, 146(4), 2055-2059.
Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food and Chemical Toxicology, 46(2), 409-420. doi: https://doi.org/10.1016/j.fct.2007.09.085
Arumugam, G., Manjula, P., & Paari, N. (2013). A review: Anti-diabetic medicinal plants used for diabetes mellitus. Journal of Acute Disease, 2(3), 196-200. doi: https://doi.org/10.1016/S2221-6189(13)60126-2
Barnett, A. H., & Owens, D. R. (1997). Insulin analogues. The Lancet, 349(9044), 47-51.
Bhatt, R. K., & Sabata, B. K. (1989). A furanoid diterpene glucoside from Tinospora cordifolia. Phytochemistry, 28(9), 2419-2422. doi: https://doi.org/10.1016/S0031-9422(00)97996-2
Bisset, N. G., & Nwaiwu, J. (1983). Quaternary alkaloids of Tinospora species. Planta medica, 48(08), 275-279. Doi: 10.1055/s-2007-969933
Bonora, E. (2007). Antidiabetic medications in overweight/obese patients with type 2 diabetes: drawbacks of current drugs and potential advantages of incretin‐based treatment on body weight. International Journal of Clinical Practice, 61, 19-28.
Bozkurt, A. E. (2024). Therapeutic uses of the medicinal plants growing in the villages of Yakutiye district, Erzurum, Türkiye. Journal of Herbal Medicine, 44, 100853. doi: https://doi.org/10.1016/j.hermed.2024.100853
Brown, E., Heerspink, H. J., Cuthbertson, D. J., & Wilding, J. P. (2021). SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. The Lancet, 398(10296), 262-276.
C Sourris, K., Yao, H., Jerums, G., E Cooper, M., I Ekinci, E., & T Coughlan, M. (2016). Can targeting the incretin pathway dampen RAGE-mediated events in diabetic nephropathy? Current Drug Targets, 17(11), 1252-1264.
Chakrabarti, R., Bhavtaran, S., Narendra, P., Varghese, N., Vanchhawng, L., Mohamed Sham Shihabudeen, H., & Thirumurgan, K. (2011). Dipeptidyl peptidase-IV inhibitory activity of Berberis aristata. J Nat Prod, 4, 158-163
Chee, Y. J., & Dalan, R. (2024). Novel Therapeutics for Type 2 Diabetes Mellitus—A Look at the Past Decade and a Glimpse into the Future. Biomedicines, 12(7), 1386.
Colca, J. R., & Tanis, S. P. (1992). Recent Advances in the Discovery and Development of Potential Antidiabetic Agents. Annual Reports in Medicinal Chemistry, 27, 219-226.
Dahlén, A. D., Dashi, G., Maslov, I., Attwood, M. M., Jonsson, J., Trukhan, V., & Schiöth, H. B. (2022). Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Frontiers in Pharmacology, 12, 807548.
Deacon, C. F. (2007). Incretin‐based treatment of type 2 diabetes: glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors. Diabetes, Obesity and Metabolism, 9, 23-3
Desai, S., & Tatke, P. (2015). Charantin: An important lead compound from Momordica charantia for the treatment of diabetes. Journal of Pharmacognosy and Phytochemistry, 3(6), 163-166.
Dixit, S. N., & Khosa, R. L. (1971). Chemical investigation of Tinospora cordifolia. Indian Journal of Applied Chemistry, 34(1), 46-47.
Dong, H., Wang, N., Zhao, L., & Lu, F. (2012). Berberine in the treatment of type 2 diabetes mellitus: A systemic review and meta‐analysis. Evidence‐Based Complementary and Alternative Medicine, 2012(1), 591654. doi: https://doi.org/10.1155/2012/591654
Ganesan, A. (2008). The impact of natural products upon modern drug discovery. Current opinion in chemical biology, 12(3), 306-317.
Gangan, V. D., Pradhan, P., & Sipahimalani, A. T. (1997). Phytoecdysones from Tinospora cordifolia: structural elucidation of ecdysterone and makisterone A by 2D NMR spectroscopy.
Gauttam, V. K., & Kalia, A. N. (2013). Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system. Journal of advanced pharmaceutical technology & research, 4(2), 108-117. Doi: 10.4103/2231-4040.111527
Ghosal, S., & Vishwakarma, R. A. (1997). Tinocordiside, a new rearranged cadinane sesquiterpene glycoside from Tinospora cordifolia. Journal of Natural Products, 60(8), 839-841. doi: https://doi.org/10.1021/np970169z
Gokalani, R., Saiyed, M., Dey, A., & Sheikh, F. (2024). Recent and Upcoming Therapies for Management of Type 2 Diabetes: A Review. Preventive Medicine: Research & Reviews, 1(5), 268-272.
Grover, J. K., & Yadav, S. P. (2004). Pharmacological actions and potential uses of Momordica charantia: a review. Journal of ethnopharmacology, 93(1), 123-132. doi: https://doi.org/10.1016/j.jep.2004.03.035
Hamza, N., Berke, B., Cheze, C., Le Garrec, R., Umar, A., Agli, A. N., ... & Moore, N. (2012). Preventive and curative effect of Trigonella foenum-graecum L. seeds in C57BL/6J models of type 2 diabetes induced by high-fat diet. Journal of ethnopharmacology, 142(2), 516-522. doi: https://doi.org/10.1016/j.jep.2012.05.028
Hanuman, J. B., Bhatt, R. K., & Sabata, B. K. (1986). A diterpenoid furanolactone from Tinospora cordifolia. Phytochemistry, 25(7), 1677-1680. doi: https://doi.org/10.1016/S0031-9422(00)81234-0
Hontecillas-Prieto, L., Flores-Campos, R., Silver, A., De Álava, E., Hajji, N., & García-Domínguez, D. J. (2020). Synergistic enhancement of cancer therapy using HDAC inhibitors: opportunity for clinical trials. Frontiers in genetics, 11, 578011.
Iftikhar, S., Ashraf, H., Faridi, M. A., Khan, M., & Khan, A. S. (2024). Clinical Trials of Materials for Medical Applications—Materials Testing for Toxicity, Efficacy, Disease Treatment, and Diagnosis in Humans (Clinical Trial Phase I, Phase II, Phase III, and Phase IV). In Materials for Medical Applications (pp. 127-150). CRC Press.
Izzo, A. A. (2012). Interactions between herbs and conventional drugs: an overview of the clinical data. Medical Principles and Practice, 21(5), 404-428.
J Meneses, M., M Silva, B., Sousa, M., Sá, R., F Oliveira, P., & G Alves, M. (2015). Antidiabetic drugs: mechanisms of action and potential outcomes on cellular metabolism. Current pharmaceutical design, 21(25), 3606-3620.
Jacob, B., & Narendhirakannan, R. T. (2019). Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech, 9, 1-17. doi: https://doi.org/10.1007/s13205-018-1528-0
Jamal, A. (2023). Embracing nature's therapeutic potential: Herbal medicine. International Journal of Multidisciplinary Sciences and Arts, 2(1), 117-126.
Joseph, B., & Jini, D. (2013). Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian pacific journal of tropical disease, 3(2), 93-102. doi: https://doi.org/10.1016/S2222-1808(13)60052-3
Kapil, A., & Sharma, S. (1997). Immunopotentiating compounds from Tinospora cordifolia. Journal of ethnopharmacology, 58(2), 89-95. Doi: https://doi.org/10.1016/S0378-8741(97)00086-X
Keller, A. C., Ma, J., Kavalier, A., He, K., Brillantes, A. M. B., & Kennelly, E. J. (2011). Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine, 19(1), 32-37. doi: https://doi.org/10.1016/j.phymed.2011.06.019
Khaleque, A., Miah, M. W., Huq, M. S., & Abdul, B. K. (1970). Tinospora cordifolia. III. Isolation of tinosporidine, cortisol, heptacosanol, and Beta-sitosterol. Scientific Research, 7, 61-62.
Khan, M. A., Gray, A. I., & Waterman, P. G. (1989). Tinosporaside, an 18-norclerodane glucoside from Tinospora cordifolia. Phytochemistry, 28(1), 273-275. doi: https://doi.org/10.1016/0031-9422(89)85057-5
Kher, J. D., & Patel, H. H. A review on potential anti-diabetic herbs and polyherbal formulations concept. doi: https://doi.org/10.18231/j.ijpp.2023.003
Khuda, M. Q. I., Khaleque, A., & Ray, N. (1964). Tinospora cordifolia constituents of plants fresh from the field. Sci. Res, 1, 177-183.
Kirtikar, K. R., & Basu, B. D. (1918). Indian medicinal plants (Vol. 2). publisher not identified Basu, Bhuwaneśwari Âśrama.
Kujur, R. S., Singh, V., Ram, M., Yadava, H. N., Singh, K. K., Kumari, S., & Roy, B. K. (2010). Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetic rats. Pharmacognosy Journal, 2(14), 27-32. doi: https://doi.org/10.1016/S0975-3575(10)80068-9
Kumar, S., Verma, N. S., Pande, D., & Srivastava, P. S. (2000). In vitro regeneration and screening of berberine in Tinospora cordifolia. Journal of Medicinal and Aromatic Plant Sciences, 22, 61.
Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3), 1121-1132. doi: https://doi.org/10.1016/j.foodchem.2011.11.140
Lv, W., Wang, X., Xu, Q., & Lu, W. (2020). Mechanisms and characteristics of sulfonylureas and glinides. Current topics in medicinal chemistry, 20(1), 37-56.
Mathu, R., Abarnadevika, A., & Ariharasivakumar, G. (2021). A study of Biguanides in the Care of Type II DIABETES mellitus. J Pharm Sci Drug Discov, 1(1), 1-9.
Maurya, R., & Handa, S. S. (1998). Tinocordifolin, a sesquiterpene from Tinospora cordifolia. Phytochemistry, 49(5), 1343-1345. doi: https://doi.org/10.1016/S0031-9422(98)00093-4
Maurya, R., Dhar, K. L., & Handa, S. S. (1997). A sesquiterpene glucoside from Tinospora cordifolia. Phytochemistry, 44(4), 749-750. Doi: https://doi.org/10.1016/S0031-9422(96)00564-X
Maurya, R., Wazir, V., Tyagi, A., & Kapil, R. S. (1995). Clerodane diterpenoids from Tinospora cordifolia. Phytochemistry, 38(3), 659-661. doi: https://doi.org/10.1016/0031-9422(94)00686-N
McKennon, S. A., & Campbell, R. K. (2007). The physiology of incretin hormones and the basis for DPP-4 inhibitors. The Diabetes Educator, 33(1), 55-66.
Moini Jazani, A., Hamdi, K., Tansaz, M., Nazemiyeh, H., Sadeghi Bazargani, H., Fazljou, S. M. B., & Nasimi Doost Azgomi, R. (2018). Herbal medicine for oligomenorrhea and amenorrhea: a systematic review of ancient and conventional medicine. BioMed research international, 2018(1), 3052768.
Mowl, A., Alauddin, M., Rahman, M., & Ahmed, K. (2009). Antihyperglycemic effect of Trigonella foenum-graecum (fenugreek) seed extract in alloxan-induced diabetic rats and its use in diabetes mellitus: a brief qualitative phytochemical and acute toxicity test on the extract. African Journal of Traditional, Complementary and Alternative Medicines, 6(3). doi: 10.4314/ajtcam. v6i3.57165
Padhya, M. A. (1986). Biosynthesis of isoquinoline alkaloid berberine in tissue cultures of Tinospora cordifolia. Indian drugs, 24(1), 47-48.
Parvin, K., Srivastava, A., Hidangmayum, N., Bansal, S., Meher, R., & Awasthi, R. (2023). Exploring the evolving role of herbal and alternative medicine in modern healthcare. Acta Traditional Medicine, 2, 35-42.
Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview of antidiabetic medicinal plants having insulin-mimetic properties. Asian Pacific journal of tropical biomedicine, 2(4), 320-330. Doi: https://doi.org/10.1016/S2221-1691(12)60032-X
Patel, M. B., & Mishra, S. (2011). Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine, 18(12), 1045-1052. doi: https://doi.org/10.1016/j.phymed.2011.05.006
Patel, M. B., & Mishra, S. M. (2012). Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats. Journal of Functional Foods, 4(1), 79-86. doi: https://doi.org/10.1016/j.jff.2011.08.002
Pathak, A. K., Agarwal, P. K., & Jain, D. C. (1995). NMR studies of 20p-hydroxyecdysone, a steroid; isolated from Tinospora cord~ roliatt. Indian journal of chemistry, 34, 674-676.
Poovitha, S., & Parani, M. (2017). Protein extract from the fruit pulp of Momordica charantia potentiates glucose uptake by up-regulating GLUT4 and AMPK. Journal of Functional Foods, 37, 507-512. doi: https://doi.org/10.1016/j.jff.2017.08.022
Potdar, D., Hirwani, R. R., & Dhulap, S. (2012). Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia, 83(5), 817-830. doi: https://doi.org/10.1016/j.fitote.2012.04.012
Prabhakar, P. K., & Doble, M. (2008). A target-based therapeutic approach towards diabetes mellitus using medicinal plants. Current Diabetes Reviews, 4(4), 291-308.
Qudrat-I-Khuda, M., Khaleque, A., Bashir, A., Roufk, M. D. A., & Ray, N. (1966). Studies on Tinospora cordifolia-Isolation of tinosporon, tinosporic acid, and tinosporol from fresh creeper. Scientific Research, 3, 9-12.
Rajalakshmi, M., & Anita, R. (2016). β-cell regenerative efficacy of a polysaccharide isolated from methanolic extract of Tinospora cordifolia stem on streptozotocin-induced diabetic Wistar rats. Chemico-biological interactions, 243, 45-53. doi: https://doi.org/10.1016/j.cbi.2015.11.021
Rajalakshmi, M., Eliza, J., Priya, C. E., Nirmala, A., & Daisy, P. (2009). Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats. Afr J Pharm Pharmacol, 3(5), 171-180.
Rangari, V. D., Shukla, P., & Badole, S. L. (2015). 4-Hydroxyisoleucine: A potential antidiabetic agent from Trigonella foenum-graecum. In Glucose Intake and Utilization in Pre-diabetes and Diabetes (pp. 191-198). Academic Press. doi: https://doi.org/10.1016/B978-0-12-800093-9.00015-6
Ruan, C. T., Lam, S. H., Chi, T. C., Lee, S. S., & Su, M. J. (2012). Borapetoside C from Tinospora crispa improves insulin sensitivity in diabetic mice. Phytomedicine, 19(8-9), 719-724. doi: https://doi.org/10.1016/j.phymed.2012.03.009
Said, R., Jadhav, S. L., & Kamble, S. C. (2023). Tinospora cordifolia a Medicinal plant with many roles: A Review. Research Journal of Pharmacognosy and Phytochemistry, 15(1), 87-90. doi: http://dx.doi.org/10.52711/0975-4385.2023.00013
Sanlioglu, A. D., Altunbas, H. A., Balci, M. K., Griffith, T. S., & Sanlioglu, S. (2013). Clinical utility of insulin and insulin analogs. Islets, 5(2), 67-78.
SARMA, D. K., Padma, P., & Khosa, R. L. (1998). Constituents of Tinospora cordifolia root. Fitoterapia (Milano), 69(6), 541-542.
Semwal, B & Shah, Kamal & Chauhan, Nagendra & Badhe, R & Divakar, K. (2008). Anti-diabetic activity of stem bark of Berberis aristata D.C. in alloxan-induced diabetic rats. Internet Journal of Pharmacology. 6.
Sharma, R., Amin, H., & Prajapati, P. K. (2015). Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pacific Journal of Tropical Biomedicine, 5(1), 68-78. doi: https://doi.org/10.1016/S2221-1691(15)30173-8
Shih, C. C., Lin, C. H., Lin, W. L., & Wu, J. B. (2009). Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. Journal of Ethnopharmacology, 123(1), 82-90. doi: https://doi.org/10.1016/j.jep.2009.02.039
Singh, J., & Kakkar, P. (2009). Antihyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. Journal of ethnopharmacology, 123(1), 22-26. doi: https://doi.org/10.1016/j.jep.2009.02.038
Sipahimalani, A., Nörr, H., & Wagner, H. (1994). Phenylpropanoid glycosides and tetrahydrofurofuranlignan glycosides from the adaptogenic plant drugs Tinospora cordifola and Drypetes roxburghii. Planta medica, 60(06), 596-597. Doi: 10.1055/s-2006-959587
Sirtori, C. R., & Pasik, C. (1994). Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacological research, 30(3), 187-228.
Subramanian, S. P., & Prasath, G. S. (2014). The antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats. Biomedicine & Preventive Nutrition, 4(4), 475-480. doi: https://doi.org/10.1016/j.bionut.2014.07.001
Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it?. Acta Pharmaceutica Sinica B, 12(7), 3049-3062.
Sundaram, R., Venkataranganna, M. V., Gopumadhavan, S., & Mitra, S. K. (1996). Interaction of a herbomineral preparation D-400, with oral hypoglycaemic drugs. Journal of ethnopharmacology, 55(1), 55-61. doi: https://doi.org/10.1016/S0378-8741(96)01474-2
Swaminathan, K., Sinha, U. C., Bhatt, R. K., Sabata, B. K., & Tavale, S. S. (1989). Structure of tinosporide, a diterpenoid furanolactone from Tinospora cordifolia Miers. Acta Crystallographica Section C: Crystal Structure Communications, 45(1), 134-136. Doi: 10.1107/s0108270188009953
Upaganlawar, A., Badole, S., & Bodhankar, S. (2013). Antidiabetic potential of trigonelline and 4-hydroxyisoleucine in fenugreek. San Diego: Academic Press. Doi: 10.1016/B978-0-12-397153-1.00006-8
Upwar, N., Patel, R., Waseem, N., & Mahobia, N. K. (2011). Hypoglycemic effect of methanolic extract of Berberis aristata DC stems on normal and streptozotocin-induced diabetic rats. Int J Pharm Pharm Sci, 3(1), 222-224.
Virdi, J., Sivakami, S., Shahani, S., Suthar, A. C., Banavalikar, M. M., & Biyani, M. K. (2003). Antihyperglycemic effects of three extracts from Momordica charantia. Journal of ethnopharmacology, 88(1), 107-111. doi: https://doi.org/10.1016/S0378-8741(03)00184-3
Williams, D. M., Jones, H., & Stephens, J. W. (2022). Personalized type 2 diabetes management: an update on recent advances and recommendations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 281-295.
Yu, Y., Liu, L., Wang, X., Liu, X., Liu, X., Xie, L., & Wang, G. (2010). Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. Biochemical pharmacology, 79(7), 1000-1006. doi: https://doi.org/10.1016/j.bcp.2009.11.017
Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.