Ameliorative effect of herbal extracts on lipid profile in albino rats, Rattus norvegicus exposed to metanil yellow

Main Article Content

Article Sidebar

Published Oct 19, 2022
Shyam Babu Gangwar Beenam Saxena M.K. Sinha

Abstract

Synthetic food colours are used as key component by food manufacturers to increase the consumer acceptance towards food items and beverages as well as for having certain properties like low cost, high colour intensity and more colour stability. These food items and beverages may have more than recommended amount of permitted food colours or some non-permitted synthetic food colours, which may lead to several health problems like disturbances in biochemical parameters, allergic reaction, cancer, mutations etc. Some herbs are having active chemical components and could be used regularly to ameliorate the toxic effect of synthetic food colours. The aim of this study was to analyse the effect of garlic and turmeric extract as a herbal antihyperlipidemic agent in albino rats fed on an azo dye, metanil yellow. The albino rats were divided into four groups (6 rats in each group). Group I (Negative control) fed on normal pellet diet, Group II (Positive control) fed on metanil yellow (MY), Group III fed on MY+ garlic extract and Group IV fed on MY+ turmeric extract. All experimental group fed on normal pellet diet and water ad libitum. Total cholesterol (TC), LDL, HDL and triglycerides (TG) were observed in serum of albino rats from all the groups. The results showed that administration of garlic and turmeric extract raise the level of HDL and lowered the level of LDL, TC and TG in blood serum of albino rats exposed to metanil yellow for 12 and 24 weeks of exposure periods. Garlic was found to be more potent in correcting the lipid profile of metanil yellow fed albino rats in comparison to turmeric extract. However, it has been concluded that both the herbs could be used as antihyperlipidemic agent to avoid health risk in human beings caused by chronic consumption of food colours in different food types consumed daily.

How to Cite

Gangwar, S. B., Saxena, B., & Sinha, M. (2022). Ameliorative effect of herbal extracts on lipid profile in albino rats, Rattus norvegicus exposed to metanil yellow. Environment Conservation Journal. https://doi.org/10.36953/ECJ.15552453

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 7 | PDF Downloads 0

Article Details

Keywords

Albino rats, Garlic, Lipid profile, Metanil yellow, Turmeric

References
Ashour, A.A. & Abdelaziz I (2009). Role of fast green on the blood of rats and the therapeutic action of vitamins C or E. Int J Integr Biol, 6, 6-11.
Bahnasy,R.M., & Ragheb, E. M. (2020). Effect of quinoa (Chenopodium quinoa) on Lipid Profile in Rats Exposed to synthetic food colours. Egyptian Journal of Nutrition and Health, 15 (2), 53-70. https://doi.org/10.21608/ejnh.2020.166695
Das, A. & Mukherjee A. (2004). Genotoxicity testing of the food colours amaranth and tartrazine. Int J Hum Gen, 4:277-280. https://doi.org/10.1080/09723757.2004.11885906
Ebrahimi, T., Behdad, B., Abbasi, M. A., Rabati, R. G., Fayyaz, A. F., Behnod, V., & Asgari, A. (2015). High doses of garlic extract significantly attenuated the ratio of serum LDL to HDL level in rat-fed with hypercholesterolemia diet. Diagnostic Pathology, 10 (1), 1-9. https://doi.org/10.1186/s13000-015-0322-0
EI-Hack, M.E.A., EI-Saadomy, M.T., Swelum, A.A., Arif, M., Abo Ghanima, M.M., Shukry M., Noreldin, A., Taha, A.E. & El -Tarabily, K.A. (2021). Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the science of food and agriculture, 101(14),5747-5762. https://doi.org/10.1002/jsfa.11372
El-Desoky, G.E., Abdel-Ghaffar,A., Al-Othman, Z.A., Habila, M.A., Al -Sheikh ,Y.A., Ghneim, H. K. & Aboul -soud,M.A. (2017) . Curcumin protects against tartrazine -mediated oxidative stress and hepatotoxicity in male rats. Eur.Rev.Med.pharmacol Sci, 21, 635-645.
Iwalokun, B.A., Ogunledun, A. D., Ogbolu,O., Bamiro, S.B. and Jimi-Omojola, J. (2004). In Vitro Antimicrobial Properties of Aqueous Garlic Extract Against Multidrug-Resistant Bacteria and Candida Species from Nigeria. J Med Food 7 (3), 327-333 https://doi.org/10.1089/1096620041938669
Khan, I.S., Ali,M.N., Hamid, R. & Ganie ,S.A.(2020). Genotoxic effect of two commonly used food dyes metanil yellow and carmoisine using Allium cepa L. as indicator. Toxicology reports,7, 370-375. https://doi.org/10.1016/j.toxrep.2020.02.009
Mahdi, C., Pratama,C.A. & Pratiwi,H.(2019). Preventive Study Garlic Extract water (Allium sativum) Toward SGPT, SGOT,and the Description of Liver Histopathology on Rat (Rattus norvegicus ), which were exposed by Rhodamine B. In IOP Conference Series: Materials Science and Engineering, 546(6), 062015). https://doi.org/10.1088/1757-899X/546/6/062015
Rahman M.A., Bala, A. K, Rahman,M.A., Hasan, M.K. Masum, R. (2019). Neuropharmacological and gastrointestinal evaluation of colouring agent metanil yellow used in food beverages. Jahangirnagar University Journal of Biological Sciences, 8(1),35-44. https://doi.org/10.3329/jujbs.v8i1.42466
Reza, M. S., Hasan, M.M., Kamruzzaman, M., Hossain, M.I., Zubair, M.A., Bari, L., Abedin, M. Z., Reza, M.A., Khalid-Bin- Ferdaus, K. M., Haque, K.M.D., Islam, K., Ahmed, M.U & Hossain, M.K. (2019) Study of a common azo food dye in mice model: Toxicity reports and its relation to carcinogencity. Food Science & Nutrition, 7(2)-667-77 https://doi.org/10.1002/fsn3.906
Saxena, B. & Sharma, S. (2015). Food color induced hepatotoxicity in Swiss albino rats, Rattus norvegicus. Toxicol. Int., 22(1),152-157. https://doi.org/10.4103/0971-6580.172286
Sharma, S., Goyal, R.P., Chakravarty, G. & Sharma, A. (2009). Haemotoxic effects of chocolate brown, a commonly used blend of permitted food colour on swiss albino mice. Asian J Exp Sci. 19, 93-103
Turley, S.D. (2004). Cholesterol metabolism and therapeutic targets rational for targeting multiple metabolic pathways. Clin Crdiol, 27,16-21. https://doi.org/10.1002/clc.4960271506
Yanam, C., Zou, L., Li, W., Song, Y., Zhao, G., & Hu, Y. (2020). Dietary quinoa (Chenopodium quinoa) polysaccharide ameliorates hie fat diet induced hyperlipidemia. Journal of Biological Macromolecule, 163, 55-65. https://doi.org/10.1016/j.ijbiomac.2020.06.241
Section
Articles