Mathematical modelling for the phosphate and nitrate carrying capacity of dams in Uttarakhand



Published Oct 19, 2022
Sachin Panwar
Shivam Nupur Goyal Mangey Ram Madhu Thapliyal Prabhakar Semwal Ashish Thapliyal


The Himalayan State of Uttarakhand has abundant natural water resources and 98 Hydro Electric Power Project (HEP’s) have been constructed, 25 are under construction and, 336 are planned for the future.  The water bodies of these HEP’s can also be utilized for other purposes besides electric power generation. To conserve the endemic aquatic biodiversity, it is necessary to understand the phosphate and nitrate dynamics of these water bodies. As there are several HEP’s on a single river and the human population around them, water bodies have changed drastically during the last decade. In this study, we have calculated the phosphate and nitrate load-carrying capacity of six dams in the Uttarakhand state of India using the Vollen-Weider mathematical model modified by Dillon, Rigler and Beveridge.  We have also measured the phosphate & nitrate content of these water bodies to confirm if our modelling methods confirmed with actual finding of sampling sites. The phosphate and nitrate carrying capacity of these six dams were found to be in the range of 0.155 mg/l to 0.557 mg/l and 0.6 mg/l to 1.3 mg/l. To the best of our knowledge, this is the first study in Uttarakhand that addresses the phosphate and nitrate carrying capacity using a mathematical model.

How to Cite

Panwar, S., K, S., Goyal, N., Ram, M., Thapliyal , M., Semwal , P., & Thapliyal , A. (2022). Mathematical modelling for the phosphate and nitrate carrying capacity of dams in Uttarakhand. Environment Conservation Journal, 23(3), 343–352.


Download data is not yet available.
Abstract 109 | PDF Downloads 220



Carrying capacity, Himalaya, Modeling, Phosphate, Vollen-Weider mathematical model

Aileen Tan SH, Sim YK, Norlaila MZ, Nooraini I, Masthurah Aileen Tan, S. H., Sim, Y. K., Norlaila, M. Z., Nooraini, I., Masthurah, A., Aqilah, N., & Noraisyah, A. B. (2021). Causes of fish kills in Penang, Malaysia in year 2019, in conjunction to Typhoon Lekima. Survey in Fisheries Sciences, 7(2), 231-247.
Almasri, M. N., & Kaluarachchi, J. J. (2004). Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. Journal of Hydrology, 295(1-4), 225-245.
Baldwin, D. S. (2013). Organic phosphorus in the aquatic environment. Environmental Chemistry, 10(6), 439-454.
Bartoszek, L., & Koszelnik, P. (2016). The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs. SpringerPlus, 5(1), 1-15.
Boström, B., & Pettersson, K. (1982). Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia, 91, 415-429.
Bueno, G. W., Bureau, D., Skipper-Horton, J. O., Roubach, R., Mattos, F. T. D., & Bernal, F. E. M. (2017). Mathematical modeling for the management of the carrying capacity of aquaculture enterprises in lakes and reservoirs. Pesquisa agropecuaria brasileira, 52, 695-706.
Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58(9), 1255-1267.
Canfield Jr, D. E., & Bachmann, R. W. (1981). Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Canadian journal of fisheries and aquatic sciences, 38(4), 414-423.
Central Water Commission. (1994). National register of large dams. Central Water Commission, Government of India.
Dillon, P. J., & Rigler, F. H. (1974). A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. Journal of the Fisheries Board of Canada, 31(11), 1771-1778.
Fadiran, A. O., Dlamini, S. C., & Mavuso, A. (2008). A comparative study of the phosphate levels in some surface and ground water bodiesof Swaziland. Bulletin of the Chemical Society of Ethiopia, 22(2).
Federation, W. E., & Aph Association. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA, 21.
Fones, G. R., Bakir, A., Gray, J., Mattingley, L., Measham, N., Knight, P., & Mills, G. A. (2020). Using high-frequency phosphorus monitoring for water quality management: a case study of the upper River Itchen, UK. Environmental monitoring and assessment, 192(3), 1-15.
Hampel, J. J., McCarthy, M. J., Gardner, W. S., Zhang, L., Xu, H., Zhu, G., & Newell, S. E. (2018). Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria. Biogeosciences, 15(3), 733-748.
Harpal, S., & Gurnam, S. (2020). Impact of Tehri Dam Construction on Biotic and Abiotic Components of River Bhilangana, Central Himalaya, India. Journal of Aquatic Biology & Fisheries, 8, 52-57.
Holtan, H., Kamp-Nielsen, L., & Stuanes, A. O. (1988). Phosphorus in soil, water and sediment: an overview. Phosphorus in freshwater ecosystems, 19-34.
ISFR. (2019). India state of forest report. Forest Survey of India.
Junaidi, J. (2021). Levels of available nitrogen-phosphorus before and after fish mass mortality in Maninjau Lake of Indonesia. Levels of Available Nitrogen-Phosphorus Before and After Fish Mass Mortality in Maninjau Lake of Indonesia.
Khan, M. Y. A., Gani, K. M., & Chakrapani, G. J. (2016). Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arabian Journal of Geosciences, 9(1), 1-9.
Kotnala, G., Dobhal, S., & Chauhan, J. S. (2016). Monitoring the self-purification capacity of the River Alaknanda stretch at Srinagar, Uttarakhand, India. International Journal of River Basin Management, 14(4), 491-498.
Larsen, D. P., & Mercier, H. T. (1976). Phosphorus retention capacity of lakes. Journal of the Fisheries Board of Canada, 33(8), 1742-1750.
Le Faucheur, S., Vasiliu, D., Catianis, I., Zazu, M., Dranguet, P., Beauvais-Flück, R., & Slaveykova, V. I. (2016). Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery. Environmental Science and Pollution Research, 23(22), 22542-22553.
Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., & Pinay, G. (2019). Eutrophication: a new wine in an old bottle? Science of the Total Environment, 651, 1-11.
López, P., López-Tarazón, J. A., Casas-Ruiz, J. P., Pompeo, M., Ordoñez, J., & Muñoz, I. (2016). Sediment size distribution and composition in a reservoir affected by severe water level fluctuations. Science of the Total Environment, 540, 158-167.
Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Dürr, H. H., Powley, H. R., & Van Cappellen, P. (2015). Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences, 112(51), 15603-15608.
Maberly, S. C., & Elliott, J. A. (2012). Insights from long?term studies in the Windermere catchment: external stressors, internal interactions and the structure and function of lake ecosystems. Freshwater Biology, 57(2), 233-243.
Maberly, S. C., Pitt, J. A., Davies, P. S., & Carvalho, L. (2020). Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters, 10(2), 159-172.
Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., ... & Scheffer, M. (2011). Allied attack: climate change and eutrophication. Inland waters, 1(2), 101-105.
Nordin, R. N., Pommen, L. W., & Meays, C. L. (2009). Water quality guidelines for nitrogen (nitrate, nitrite, and ammonia). Water Stewardship Division, Ministry of Environment, Province of British Columbia, Canada, 1-29.
Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C., & Venkiteswaran, J. J. (2017). Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Canadian journal of fisheries and aquatic sciences, 74(12), 2005-2029.
Randall, M. C., Carling, G. T., Dastrup, D. B., Miller, T., Nelson, S. T., Rey, K. A., ... & Aanderud, Z. T. (2019). Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake. PLoS One, 14(2), e0212238.
Raveendar, B., Gurjar, U. R., Takar, S., Gugulothu, R., Mamidala, S., & Guguloth, B. (2021). Soil and water characteristics of Nanak Sagar reservoir, Tarai region of Uttarakhand, India. IJCS, 9(1), 942-948.
Reckhow, K. H., & Simpson, J. T. (1980). A procedure using modeling and error analysis for the prediction of lake phosphorus concentration from land use information. Canadian Journal of Fisheries and Aquatic Sciences, 37(9), 1439-1448.
Richardson, J., Miller, C., Maberly, S. C., Taylor, P., Globevnik, L., Hunter, P., & Carvalho, L. (2018). Effects of multiple stressors on cyanobacteria abundance vary with lake type. Global change biology, 24(11), 5044-5055.
Rickson, R. J. (2014). Can control of soil erosion mitigate water pollution by sediments? Science of the Total Environment, 468, 1187-1197.
Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and oceanography, 37(7), 1460-1482.
Saraswathy, R., Muralidhar, M., Sanjoy, D., Kumararaja, P., Suvana, S., Lalitha, N., & Vijayan, K. K. (2019). Changes in soil and water quality at sediment-water interface of Penaeus vannamei culture pond at varying salinities. Aquaculture Research, 50(4), 1096-1106.
Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J. & Kasian, S. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 105(32), 11254-11258.
Sharma, R. C., Bahuguna, M., & Chauhan, P. (2008). Periphytonic diversity in Bhagirathi: preimpoundment study of Tehri dam reservoir. Journal of Environmental Science and Engineering, 50(4), 255-262.
Sharma, P. N. S. K. N., & Kala, K. C. K. (2019). Coldwater capture fishery in the Ganga headwaters having operational hydropower projects: A failing co-existence. Journal of the Inland Fisheries Society of India, 6.
Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van der Velde, G. J. G. M., & Roelofs, J. G. M. (2006). Internal eutrophication: how it works and what to do about it-a review. Chemistry and ecology, 22(2), 93-111.
Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506(1), 135-145.
Thin, M. M., Sacchi, E., Setti, M., & Re, V. (2020). A dual source of phosphorus to lake sediments indicated by distribution, content, and speciation: Inle Lake (Southern Shan State, Myanmar). Water, 12(7), 1993.
Uttarakhand Jal Vidyut Nigam Limited (UJVN Limited). Hydro Power Projects in Uttarakhand (cited August 24 2021). Available from Welcome to Uttarakhand Jal Vidyut Nigam Ltd. Dehradun (
Wanja, D. W., Mbuthia, P. G., Waruiru, R. M., Mwadime, J. M., Bebora, L. C., Nyaga, P. N., & Ngowi, H. A. (2020). Fish husbandry practices and water quality in central Kenya:potential risk factors for fish mortality and infectious diseases. Veterinary medicine international, 2020.
Warningsih, T., Setiyanto, D. D., Fahrudin, A., Adrianto, L. (2016). Carrying capacity of Koto Panjang reservoir's ecosystem provisioning services for floating net cage culture (FNC). International Journal of Research in Earth and Environmental Sciences 4(1): 30-35.
Zhang, Y., Cheng, L., Li, K., Zhang, L., Cai, Y., Wang, X., & Heino, J. (2019). Nutrient enrichment homogenizes taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes. Limnology and Oceanography, 64(3), 1047-1058.
Original Articles