Screening germplasm lines for identification of resistant source against gray mold disease (Amphobotrys ricini (N.F. Buchw.) Hennebert) of castor

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Mar 8, 2023
K Greeshma
Gali Uma Devi Ravulapalli Durga Prasad Senthilvel Senapathy Viswanathaswamy Dinesh Kumar S.J. Rahman

Abstract

The present study was aimed to screen castor germplasm lines varying in wax content against gray mold disease for the identification of resistance source under in vitro conditions using detached spike and detached capsule technique. Out of thirty-three lines screened against gray mold under in vitro conditions six lines with low wax content viz., RG-1754 (0.24 µg/mg), RG-1875 (0.12 µg/mg), RG-1915 (0.21 µg/mg), RG-1919 (0.24 µg/mg), RG-1972 (0.08 µg/mg) and RG-1926 (0.08 µg/mg) recorded significantly low levels of infection ranging from 10 to 20 per cent 7 days after inoculation. Whereas the susceptible cultivar DCH -519 has recorded disease severity of more than 90 %. The pearman's rank correlation analysis showed a strong positive relation between disease severity and capsule wax content, with p < 0.01 and r = 0.884.

How to Cite

Greeshma, K., Devi, G. U., Prasad, R. D., Senapathy, S., Kumar , V. D., & Rahman , S. (2023). Screening germplasm lines for identification of resistant source against gray mold disease (Amphobotrys ricini (N.F. Buchw.) Hennebert) of castor . Environment Conservation Journal, 24(2), 142–147. https://doi.org/10.36953/ECJ.14002415

Downloads

Download data is not yet available.
Abstract 98 | PDF Downloads 173

##plugins.themes.bootstrap3.article.details##

Keywords

Castor, Disease severity, Gray mold , Screening, Wax content

References
Anjani, K., & Raoof, M.A. (2010). Sources of resistance to Botrytis ricini (Godfrey) in castor germplasm. Journal of Oilseeds Research. 27: 20-21
Anjani, K. (2012). Castor genetic resources: A primary gene pool for exploitation. Industrial Crops and Products. 35 (1): 1-14.
Ayesha Parveen, P., Venkata Ramana, J., Durga Prasad, R., Senthilvel, S., Lal Ahamed, M., Greeshma, K., Viswanathaswamy Dinesh Kumar., & Sarada, C. (2022). Waxy bloom on capsules is a major determinant of early infection by gray mold (Amphobotrys ricini (NF Buchw .) Hennebert) in castor (Ricinus communis L.). Journal of Phytopathology. 00: 1–12.
Bhavanidurga, K.B. (2013). Studies on various strategies to develop transgenic castor tolerant to botrytis grey mold using defense regulatory genes. Dissertation. University of Hyderabad, Hyderabad.
Bourdenx, B., Bernard, A., Domergue, F., Pascal, S., Leger, A., Roby, D., Pervent, M., Vile, D., Haslam, R.P., Napier, J.A., Lessire, R., & Joubes, J. (2011). Overexpression of arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology. 156(1): 29–45.
Ebercon, A., Blum, A., & Jordan, W.R. (1977). A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop Science. 17: 179-180.
Hansjakob, A., Riederer, M., & Hildebrandt, U. (2011). Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathology. 60:1151–1161.
Jeong, G.T., & Park, D.H. (2009). Optimization of biodiesel production from castor oil using response surface methodology. Applied Biochemistry and Biotechnology. 156: 431–441.
Ogunniyi, D.S. (2006). Castor oil: a vital industrial raw material. Bioresource Technology. 97: 1086–1091.
Prasad, R.D., & Kumaraswamy, B. (2017). Simple technique for screening of gray mold disease in castor. International Journal of Pure and Applied Bioscience. 5 (4): 1653-1656.
Prasad, R.D., Raoof, M.A., Senthilvel, S., Dinesh Kumar, V., Praduman, Y., Bhuvaneswari, R., & Varaprasad, K.S. (2016). Gray mold of castor- ICAR Technical bulletin. Indian Institute of Oilseeds Research, Hyderabad. 1-40.
Ramanjaneyulu, A.V, Anudradha, G., Ramana, M.V., Reddy, A., & Gopal, N. M. (2017). Multifarious uses of castor (Ricinus communis L.). International Journal of Economic Plants. 4(4): 170-176.
Severino, L.S., Auld, D.L., Baldanzi, M., Candido, M.J.D., Chen, G., Crosby, W., Tan, D., He, X., Lakshmamma, P., Lavanya, C., Machado, O.L.T., Mielke. T., Milani. M., Miller, T.D., Morris, J.B., Stephen, A.M., Navas, A.A., Soares, D.J., Atti, V.S., Wang, M.L., Zanotto, M.D. and Zieler, H. (2012). A review on the challenges for increased production of castor. Agronomy Journal. 104 (4): 853–880.
SEA Castor crop survey 2020-21. The Solvent Extractors Association of India, Mumbai, India. 2021
Soares, D.J. (2012). The gray mold of castor bean: A review. In Tech Publisher, Rijeka, Croatia.
Sussel, A.A.B. (2009). Epidemiology and management of castor bean mold. Embrapa Cerrados, [Documents 241], Brasília, Brazil.
Wang, F., Zhang, P., Qiang, S., Zhu, Y., & Xu, L. (2008). Effects of epi- cuticular wax from Digitaria sanguinalis and Festuca arundinacea on infection by Curvularia eragrostidis. Australasian Plant Pathology. 37:43–52.
Weidenbach, D., Jansen, M., Franke, R.B., Hensel, G., Weissgerber, W., Ulferts, S., Jansen, I., Schreiber, L., Korzun, V., Pontzen, R., Kumlehn, J., Pillen, K., & Schaffrath, U. (2014). Evolutionary conserved function of barley and Arabidopsis 3-ketoacyl-CoA synthases in providing wax signals for germination of powdery mildew fungi. Plant Physiology. 166: 1621-1633.
Zhu, M., Riederer, M., & Hildebrandt, U. (2017). Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis. Fungal Biology. 121(8):716–772.
Section
Research Articles