Environment Conservation Journal 24 (3):8-13, 2023

Journal homepage: https://www.environcj.in/

Environment Conservation Journal ISSN 0972-3099 (Print) 2278-5124 (Online)

Diversification of traditional rice – wheat system with vegetables for sustainable productivity, profitability and energy efficiency

Avnee 🖂

Department of Agronomy, CSK Himachal Pradesh Krishi Vishwavidyalaya, Palampur, District Kangra (HP) SC Negi Department of Agronomy, CSK Himachal Pradesh Krishi Vishwavidyalaya, Palampur, District Kangra (HP) **Puneet Kaur**

Department of Agronomy, CSK Himachal Pradesh Krishi Vishwavidyalaya, Palampur, District Kangra (HP) Navneet Kaur

Department of Agronomy, CSK Himachal Pradesh Krishi Vishwavidyalaya, Palampur, District Kangra (HP)

ARTICLE INFO	ABSTRACT
Received : 28 July 2022	Rice – wheat cropping system is backbone of agriculture and responsible for
Revised : 10 December 2022	achieving food security in the country. However, because of threat to
Accepted : 03 January 2023	sustainability of this system there is urgent need of crop diversification. A field
	experiment to diversify the rice – wheat system in wet zone of Himachal
Available online: 11 April 2023	Pradesh was carried out during the year 2017-18 at Bhadiarkhar research
-	farm, Department of Agronomy, CSK HPKV, Palampur to evaluate
Key Words:	productivity, profitability and energy pattern of eight different rice-based
Cropping system	cropping systems. Results revealed that rice – palak – cucumber system
Energy	resulted in significantly higher rice grain equivalent yield (16477 kg/ha),
Food security	profitability (₹ 848.76/ha/day), productivity (63.62 kg/ha/day), net returns (₹
Productivity	219828/ha) and benefit cost ratio than other crop sequences whereas lowest rice
Profitability	grain equivalent yield (6259 kg/ha) and productivity (21.44 kg/ha/day) was
Sustainability	recorded from traditional rice – wheat system. However, land utilization ratio
	and duration were found to be maximum from turmeric - pea - summer
	squash system (86.85) followed by rice – wheat. Energy utilization was noticed
	highest from rice – lettuce – potato + coriander system followed by turmeric –
	pea – summer squash. Maximum energy output (280.42×10 ³ MJ/ha) and energy
	efficiency (10.58) were observed in rice – palak – cucumber system.

Introduction

attaining self-sufficiency in food-grain production in India. One of the most important cropping systems in country is rice – wheat system which is considered to be the major contributor to the national food basket. Maximum area of country is covered by this system (about 10.5 M ha area) (Sarkar, 2015). However, concern has been raised over the sustainability of this system due to natural resource degradation (declining soil fertility and lowering of groundwater tables), climate variability, profitability, reduction in and decelerating yield growth rates of both the crops (Lohan et al., 2017; Jat et al., 2021). As much of maximization owing to high cropping intensity. It

Cereal-based cropping systems have significant role the food and economic security has been dependent on this cropping system, the low production level needs urgent attention. So, to maintain sustainability it is imperative to intensify and diversify rice - wheat system with other crops of high economic value. Crop diversification is a useful means to increase crop output, achieve stability and sustainability in production and stabilizing farm income. It is significant tool in minimizing the risk in farming (Hedge et al., 2003). Diversified farms are resilient to shocks and stresses thus are economically and ecologically stable. Diversification is responsible for yield

Corresponding author E-mail: avneemandial@gmail.com Doi:https://doi.org/10.36953/ECJ.14082418

This work is licensed under Attribution-Non-Commercial 4.0 International (CC BY-NC 4.0) © ASEA

provides large scale boost to Indian agricultural economy in terms of income, employment and nutritional improvement. Intensification in rice wheat system can be achieved through either adding or replacing rice or wheat crop with some high value crops like vegetables which will not only increase production and profitability, but it also maintains sustainability to meet requirement of future generation (Samui et al., 2004). It also improves socio-economic condition of farmers and provide year-round income and employment to them. Agriculture in Himachal is characterized by presence of large number of small and marginal farmers. The wet zone is bestowed upon with plenty of rainfall congenial for vegetable production. Also, hilly area of the state is famous for production of high-quality vegetables which are major driving force behind diversifying cerealbased cropping systems with high value vegetables. Therefore, to increase income of small households, alternative cropping systems suited to the region for efficient utilization of resources need to be selected for higher system productivity, economic returns and benefit cost ratio.

Material and Methods

Experimental site

A field investigation on diversification of rice – wheat cropping system was carried out in the year 2017-18 under All India Coordinated Research Project to evaluate productivity, profitability and energy auditing of diversified cropping systems at Bhadiarkar research farm of department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur. The research site was located at latitude of 32°04′ N and longitude of 76°35′ E and at an elevation of 1100 m amsl in the Palam valley of Kangra region.

Soil and Climate

Soil of experimental farm was silty clay loam in texture, slightly acidic (pH 5.5) with high organic carbon (0.95%), available nitrogen (295.12 kg/ha), phosphorus (68.58 kg/ha) and potassium (123.35 kg/ha) at the start of investigation. The total rainfall recorded was 2851mm from June 2017-June 2018. The minimum and maximum temperature varied from 3.06 - 20.78 and 15.71 - 32.89 during the cropping period. The climate of region is classified

as humid sub-tropical with cool winters and mild summers.

Treatment details

The experiment was laid out in randomized block design with eight treatments (T₁: Rice – Wheat, T₂: Rice - Pea - Summer squash, T₃: Okra - Radish -Onion, T₄: Turmeric – Pea – Summer squash, T₅: Rice – Lettuce – Potato + Coriander, T₆: Rice – Palak – Cucumber, T7: Rice – Broccoli – Radish and T_8 : Colocasia – Pea + Coriander) which were replicated four times. All the crops were provided with full recommended dose of fertilizes. All the intercultural operations were according to recommended package of practices for the region. The varieties, seed rate and fertilizer doses for each crop is given in table 1.Economic yield of all the crops were converted to rice grain equivalent yield (RGEY) as per the price of the respective crop at a local market and was calculated as follows-

RGEY (kg/ha)= Economical yield of a crop (kg/ha) x $\frac{\text{Price}(\overline{\langle kg \rangle}) \text{ of same crop}}{\text{Price}(\overline{\langle kg \rangle}) \text{ of rice}}$

Land use efficiency (LUE) was measured by dividing actual duration of crop sequence with 365 and expressed as percentage. Energy input (MJ/ha) was calculated by summing up all the energy expenditures used for raising the component crops. Energy output (MJ/ha) was determined by adding the energy equivalents (MJ) for main and by products of crops.

$$\mathbf{E}_{0} = \{ \sum (\mathbf{M}_{y} \ast \mathbf{E}_{m}) \} + \{ \sum (\mathbf{B}_{y} \ast \mathbf{E}_{b}) \}$$

E₀ is the energy output

 $\mathbf{M}_{\mathbf{y}}$ and $\mathbf{B}_{\mathbf{y}}$ are the economic and by-product yield, respectively

 E_{m} and E_{b} are energy equivalents for main crop and by-products, respectively

Energy use efficiency, $EUE = \frac{Energy Output (MJ/ha)}{Energy Input (MJ/ha)}$

Energy productivity = $\frac{\text{Grain Output (kg/ha)}}{\text{Energy Input (MJ/ha)}}$

Results and Discussion

Rice grain equivalent yield, productivity, land use efficiency and duration

The rice equivalent yield (RGEY) was recorded highest in rice – palak – cucumber (table 2) which

Environment Conservation Journal

was followed by okra – radish – onion and turmeric and Kachroo et al. (2014) also reported similar – pea – summer squash which might be due to high market price of vegetables compared to cereals and also high cropping intensity than cereal-based system. Lowest RGEY was recorded from traditional rice – wheat system (Jat et al., 2012) which was 2.6 times less than rice - palak cucumber. Productivity also followed almost similar trend as rice equivalent yield. Maximum land use efficiency was recorded from rice productivity was observed in rice - palak cucumber sequence because of higher production sequence (table 2). and market price of cucumber. Tandel et al. (2014)

results where maximum rice grain equivalent yield and productivity was observed from diversified vegetable-based sequence compared to cereal-based system. Total duration and land utilization efficiency was maximum for turmeric - pea summer squash system which was followed by rice - wheat and rice - pea - summer squash. Lowest broccoli - radish and rice - palak - cucumber

Table 1: Varieties, seed rate and fertilizer doses of all the crops

Sequence	Crop	Variety	Seed rate		Fertilizer dose			
			(kg/ha)	Ν	P2O5	K2O		
		Khari	f					
T_1	Rice	HPR-2143	15	90	20	40		
T2	Rice	HPR-2143	15	90	20	40		
T3	Okra	P-8	15	75	25	55		
T4	Turmeric	Palam pitamber	2250	30	15	60		
T5	Rice	HPR-2143	15	90	20	40		
T ₆	Rice	HPR-2143	15	90	20	40		
T7	Rice	HPR-2143	15	90	20	40		
T8	Colocasia	Local	2000	75	25	50		
		Rabi						
T1	Wheat	HPW-155	100	120	60	30		
T ₂ Pea Palam Priya		Palam Priya	75	25	30	60		
T3	Radish Japanese white		8	100	25	35		
T4	Pea			25	30	60		
T5			0.5	60	20	40		
T ₆ Palak Pusaharit		Pusaharit	30	74	25	30		
T ₇ Broccoli Palam samrid		Palam samridhi	0.5	150	50	55		
T ₈ Pea + Coriander		Palampriya+Local	75+10	25	30	60		
	·	Summe	er					
T_1	-	-	-	-	-	-		
T ₂	Summer squash	Pusaalankar	8	100	25	55		
T3	Onion	Nasik red	10	125	37	60		
T4	Summer squash	Pusaalankar	8	100	25	55		
T5	Potato + Coriander	Kufrijyoti + Local	2250 + 10	120	40	60		
T ₆	Cucumber	Palam sanjog	10	100	25	60		
T 7	Radish	Marvel white	4	100	25	35		
T8	-	-	-	-	-	-		

TT 1 1 A D' '		11 1 1 1 1 1	1	e · · · ·	• ,
Table 2: Rice grain	eauivalent vie	eld LILE and	nraductivity a	t rice_hased	eronning systems
I able Li Mice gi am	cyurratene yn	Ciu, LUL anu	productivity o	I TICC Dascu	cropping systems

	Cropping sequence	Biological yield (kg/ha)	RGEY (kg/ha)	Duration (days)	LUE (%)	Productivity (kg/ha/day)
T1	Rice – Wheat	4072 + 2273	6259	96 + 196 (292)	80.00	21.44
T ₂	Rice – Pea – Summer squash	3598 + 2273 + 7292	13163	96 + 132 + 54 (282)	77.26	46.68
T3	Okra – Radish – Onion	1098 + 5398 + 13636	14025	63 + 83 + 123 (269)	73.70	52.14
T4	Turmeric – Pea – Summer squash	2794 + 1610 + 7008	13506	131 + 132 + 54 (317)	86.85	42.61
T ₅	Rice - Lettuce - Potato + Coriander	3930 + 3409 + 8523 + 379	12547	96 + 58 + 119 (273)	74.79	45.96
T ₆	Rice – Palak – Cucumber	3409 + 1420 + 11648	16477	96 + 113 + 50 (259)	70.96	63.62
T 7	Rice – Broccoli – Radish	2841 + 2367 + 3598	7599	96 + 103 + 59 (258)	70.68	29.46
T8	Colocasia – Pea + Coriander	8144 + 1894 + 237	10630	131 + 133 (264)	72.33	40.26
	CD		1737			6.61

10

Environment Conservation Journal

This was due to presence of more fallow period between harvest and sowing of successive crop. These cropping systems need more intensification to get more profit per unit area per unit time. Among the crops, wheat crop remained in field for longest followed by pea, turmeric and onion while cucumber, summer squash, lettuce and radish covered the field for very short duration i.e for less than 60 days.

Energy pattern

Energy pattern of different rice-based cropping systems were evaluated (table 3). Rice - lettuce potato + coriander cropping system utilized maximum amount of energy which is attributed to labour intensive nature of potato crop and high cropping intensity of this system. This sequence was followed by turmeric - pea - summer squash and rice - broccoli - radish. However, rice - wheat sequence utilized the lowest amount of energy. Similar results were reported by Sharma et al. (2004). In case of energy output, rice - pea summer squash system was reported to had significantly higher energy output followed by rice reported to be least productive (0.64 kg/MJ).

- wheat, rice - broccoli - radish, rice - lettuce potato + coriander, colocasia - pea + coriander, rice – palak – cucumber, turmeric – pea – summer squash and least for okra - radish - onion (127.71). Net energy was also recorded maximum for rice pea - summer squash system followed by rice wheat. This was due to more output of energy as compared to energy use in these systems. Least net energy was from okra - radish - onion sequence.

The energy use efficiency was recorded maximum in rice - pea - summer squash. However, this sequence was at par with rice – wheat system. This was due to production of maximum energy with low energy input in this system. Similar results were also reported by Kacharoo et al (2012). Significantly lower energy efficiency was observed in okra - radish - onion which was at par with turmeric - pea - summer squash. Among all the cropping systems, rice – lettuce – potato + coriander was found to be most productive (9.95 kg/MJ) followed by Colocasia - pea + coriander whereas traditional rice - wheat system was

	Cropping systems	Energy input (MJ/ha)	Energy output (MJ/ha)	Net Energy (MJ/ha)	Energy Efficiency	Energy productivity
T1	Rice – Wheat	23478.37	240113.64	216635.27	10.23	0.64
T ₂	Rice – Pea – Summer squash	26513.69	280421.40	253907.71	10.58	1.49
T ₃	Okra – Radish – Onion	29505.84	127712.12	98206.28	4.33	1.90
T 4	Turmeric – Pea – Summer squash	33780.22	159308.71	125528.49	4.72	1.16
T 5	Rice – Lettuce – Potato + Coriander	39804.19	205118.37	165314.18	5.15	9.95
T ₆	Rice – Palak – Cucumber	27857.43	168522.73	140665.30	6.05	1.84
T ₇	Rice – Broccoli – Radish	33102.41	215250.95	182148.54	6.50	0.88
T8	Colocasia – Pea + Coriander	26616.72	197500.00	170883.28	7.42	6.14
	CD	-	28814.98	28814.98	0.98	0.06

Economic analysis

cultivation of crops was involved in turmeric - pea - summer squash system (₹ 168 040/ha) followed by rice - lettuce - potato + coriander and okra radish - onion. However, least cost was involved in rice – wheat sequence. Rice – palak – cucumber system generated highest gross and net returns (₹

It is evident from table 4 that maximum cost for 344 488 and 219 828/ha, respectively) which was followed by rice - pea - summer squash and okra radish - onion. Lowest gross returns were obtained from rice – wheat system (₹ 163 542/ha) whereas net returns were lowest from rice - broccoli radish (₹ 80 163/ha) followed by rice – wheat (₹ 80163/ha). Similar results were reported by Prasad

the similar trend being highest from rice - palak cucumber system (5.64) and lowest from rice -

and Urkurkar (2010). Benefit cost ratio followed corroborate the findings of Prasad (2016). Moreover, all the cropping systems are intensified than rice - wheat system. Rice - palak - cucumber wheat (1.88). Returns and benefit cost ratio was cropping system generated maximum income higher from the systems including vegetables (848.76 ₹/ha/day) mainly because of higher compared to cereal-based system. These results production which ultimately fetch more returns

Table 4: Economic analysis of various rice-based cropping systems

		Cost of cultivation	Returns (₹/ha)			Profitability
	Cropping sequence	Cost of cultivation	Gross	Net	B:C	(₹/ha/day)
T ₁	Rice – Wheat	82014	163542	80163	1.88	274.53
T ₂	Rice – Pea – Summer squash	127646	285914	156903	4.06	556.39
T3	Okra – Radish – Onion	130003	282395	152392	2.91	566.51
T ₄	Turmeric – Pea – Summer squash	168040	275846	107806	2.67	340.08
T ₅	Rice – Lettuce – Potato + Coriander	162534	266004	93075	3.07	340.93
T ₆	Rice – Palak – Cucumber	123295	344488	219828	5.64	848.76
T ₇	Rice – Broccoli – Radish	121222	168196	45609	1.04	176.78
T ₈	Colocasia – Pea + Coriander	129373	224091	94718	1.58	358.78
	CD		35295	35295	0.29	134.26

pea - summer squash and okra - radish - onion crop in system was found to increase dry matter whereas rice – broccoli – radish (176.78 ₹/ha/day) and rice – wheat (274.53 ₹/ha/day) were least squash. Land use efficiency was maximum from profitable. Economic efficiency of rice - palak cucumber was recorded 380% and 209% higher over rice - broccoli - radish and rice - wheat system. Prasad et al. (2013) and Ray et al. (2016) also reported similar results in rice-based cropping system.

Conclusion

From the research it can be concluded that rice – palak - cucumber cropping sequence resulted in higher rice grain equivalent yield, economic and production efficiency, net and gross returns and benefit cost ratio whereas energy efficiency and energy output were recorded highest from rice -

References

- Hedge, D.M., Tiwari, S.P. and Rai, M. (2003). Crop diversification in Indian agriculture. Agricultural Situation *in India*,351-354.
- Jat, H.S., Kumar, V., Kakraliya, S.K., Abdallah, A.M., Datta, A., Choudhary, M., Gathala, M.K., McDonald, A.J., Jat, M.L. and Sharma, P.C. (2021). Climate-smart agriculture practices influence weed density and divesity in cerealbased agri-food systems of western Indo-Gangetic plains. Scientific Reports, 11, 15901.

from cucumber. This system was followed by rice - pea - summer squash system. Inclusion of legume production and yield of succeeding crop i.e summer turmeric - pea - summer squash which utilized the land for maximum period. Overall, it can be concluded that vegetable-based systems are superior in almost all aspects over traditional rice wheat system. So, it is advisable to farmers to substitute cereal-based system with diversified crops so as to provide additional sources of revenue, making farming more resilient, promoting a diverse ecosystem for the long-term viability of the farm, sustainable production and for better resource use efficiency.

Conflict of interest

The authors declare that they have no conflict of interest.

Jat, R.A., Dungrani, R.A., Arvadia, M.K. and Sahrawat, K.L. (2012). Diversification of rice (Oryza sativa L.) based

cropping systems for higher productivity, resource-use efficiency and economic returns in South Gujarat of India. Archives of Agronomy and Soil Science, 58(6), 561-572.

Kachroo, D., Thakur, N.P., Kaur, M., Kumar, P., and Sharma, R. (2012). Productivity and energetic of rice (Oryza sativa) based cropping systems under sub-tropical condition of Jammu. Indian Journal of Agronomy, 57: 117-121.

- Kachroo, D., Thakur, N.P., Kaur, M., Kumar, P., Sharma, R. & Khajuria, V. (2014). Diversification of rice-based cropping system for enhancing productivity and employment. *Indian Journal of Agronomy*, 59, 21-25.
- Lohan, S.K., Jat, H.S., Yadav, A., Sidhu, H.S., Jat, M., Choudhary, M., Peter, J.& Sharma, P. (2017). Burning issues of paddy residue management in north-west states of India. *Renewable and Sustainable Energy Reviews*, 81, 693-706.
- Prasad, A. (2016). Diversification of existing rice-based cropping system for sustainable productivity under assured irrigation condition for Chhattisgarh plains. *International Journal of Multidisciplinary Education and Research*, 1(3), 85-88.
- Prasad, D., and Urkurkar, J.S. (2010). Economic evaluation of rice based cropping sequences in plain areas of Chhattisgarh. *Journal of Soils and Crops*, 20: 229-232.
- Prasad, D., Yadava, M.S.& Singh, C.S. (2013). Diversification of rice-based cropping systems for higher productivity, profitability and resource-use efficiency under irrigated ecosystem of Jharkhand. *Indian Journal of Agronomy*, 58, 264-270.

- Ray, M., Roy, D.C.&Zaman, A. (2016). Evaluation of rice (*Oryza sativa*)-based cropping systems for increasing productivity, resource use efficiency and energy productivity in coastal West Bengal. *Indian Journal of Agronomy*, 61(2), 131-137.
- Samui, R., Kundu, A., Mazumdar, D., Mani, P.&Sahu, P. (2004). Diversification of rice (*Oryza sativa*)-based cropping system in new alluvial zone of West Bengal. *Indian Journal of Agronomy*, 49,71-73.
- Sarkar, S. (2015). Management practices for enhancing fertilizer use efficiency under rice-wheat cropping system in the Indo-Gangetic Plains. *Innovare Journal of Agricultural Science*, 3(2), 5–10.
- Sharma, R.P., Pathak, S.K., Haque, M.& Raman, K.R. (2004). Diversification of traditional rice (*Oryza sativa*) based cropping system for sustainable production in South Bihar alluvial plains. *Indian Journal of Agronomy*, 49(4), 218-222.
- Tandel, B.M., Patel, N.N. &Tandel, Y.N. (2014). Economic production on rice based vegetable cropping system. *Indian Journal of Agronomy*, 79, 233-236.
- **Publisher's Note:** ASEA remains neutral with regard to jurisdictional claims in published maps and figures.