Journal homepage: https://www.environcj.in/

ISSN 0972-3099 (Print) 2278-5124 (Online)

Bioefficacy and economics of certain new molecule of insecticides against Gram pod borer, *Helicoverpa armigera* (Hübner) in chickpea

Nitish Kumar Alok

Department of Entomology, College of Agriculture, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya , Uttar Pradesh, India.

Sameer Kumar Singh⊠

Department of Entomology, College of Agriculture, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya - ttar Pradesh, India.

Umesh Chandra

Department of Entomology, College of Agriculture, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya - Uttar Pradesh, India.

ARTICLE INFO	ABSTRACT
Received : 24 December 2021	Gram pod borer (Helicoverpa armigera) is a major insect pest of chickpea. The
Revised : 10 March 2022	gram pod borer begins to infest at vegetative stage and later feeds on flowers
Accepted : 20 March 2022	and developing pods. A field investigation was conducted to evaluate the
	bioefficacy of certain new molecule insecticides against Helicoverpa armigera
Available online: 29 May 2022	(Hübner) on chickpea during Rabi 2020-21 in randomized block design with
	three replications. The outcomes revealed that the application of
Key Words:	Chlorantraniliprole 18.5% SC @ 25g a.i./ha and Cyantraniliprole 10.26% OD
Bioefficacy	(a) 60g a.i./ha were established to be most effective treatments and application
Chickpea	of Fipronil 5% SC @ 50g a.i./ha was least effective in respect of reduction of <i>H</i> .
Gram pod borer	armigera larval population. The maximum yield was recorded in
Helicoverpa armigera	Chlorantraniliprole 18.5% SC @ 25g a.i./ha (14.00 q/ha) followed by
Insecticides	Cyantraniliprole 10.26% OD @ 60g a.i./ha (13.73 q/ha) and lowest yield was
	recorded from Novaluron 75g a.i./ha (10.15 q/ha) treated plot. The economics
	of different new molecule insecticides indicated that higher benefit cost ratio
	(BCR) was observed from Lambda Cyhalothrin 30g a.i./ha (7.86:1) followed by
	Emamectin benzoate 12g a.i/ha (6.75:1) and the lower BCR was recorded from
	Cyantraniliprole 60g a.i./ha (1.64:1) and Novaluron 75g a.i./ha (1.58:1).
	Chlorantraniliprole and Cyantraniliprole are newer group of insecticides,
	which are relatively safer and more effective against gram pod borer as
	comparison to conventional insecticides and can be used in successful
	management of this key pest of chickpea.

Introduction

Pulses are dry seeds of plants which belongs to Leguminosae family. Pulses are source of protein, amino acids and have other medicinal properties. Production and consumption of higher amount of pulses are the best way to overcome spread of protein malnutrition in world. In 2016, United Nations General Assembly (UNGA) celebrated as International Year of Pulses (IYP) to generate awareness in food security and several benefits of protein and also about sustainable foods production for small holder farmers (Anonymous, 2016). In India over dozens of pulse crops grown, however

Chickpea (*Cicer arietinum* L.) is the third most important pulses crop after dry beans and field pea. It is commonly known as Bengal gram, chana or gram, originated from South Western Asia. It is an important *Rabi* pulse crop of India, and considered as 'King of Pulses' due to its nutritional values and high demand (Bhatt and Patel, 2001). Chickpea highly fix more than 80 per cent of atmospheric nitrogen in association with *Rhizobium* spp. India leads top rank in area and production of chickpea. In India, chickpea occupies 107.21 lakh hectare area and producing 9.02 million tons with 895 kg/ha productivity (Anonymous, 2020). Madhya Pradesh ranks highest in chickpea production (32.37%) followed by Rajasthan (19.46%), Maharashtra (15.82%), Andhra Pradesh (8.76%) and Uttar Pradesh (6.45%) and these states contributing 82% of total production of country (Naik et al., 2018). Insect pests are one of the major limiting factors for production of chickpea. In India, gram pod borer (Helicoverpa armigera Hübner) (Noctuidae, Lepidoptera) is a major pest of chickpea. The gram pod borer begins to infest at vegetative stage and later feeds on flowers and developing pods until crop maturity, where pod borer caused 60 to >90 per cent losses in seeds/grains yield under favourable conditions throughout the India (Anonymous, 2013; Patil et al., 2017). Due to the feeding preference of the H. armigera larvae on the plant parts that are rich in protein content and reproductive parts of growing plants, e.g. flowers, pods, cotton bales and buds results in a reduction in the crop yield. The Indian farmers mostly rely on insecticides for the management of insect pests' infestation because; agrochemicals are considered as the last recline for management due to their quick knockdown effect. Over dependence on a particular group of chemicals is one of the important reasons for the rapid development of resistance and hazards to the environment and human health, among the several avenues to overcome the insecticidal resistance and

environmental problems, replacement with the new molecules of insecticide is one of the important considerations (Gill and Garg, 2014). Keeping these facts in mind the present investigation was planned and conducted to find out the reliable and cost effective source for the management of gram pod borer in chickpea.

Material and Methods

The present experiment was conducted under field conditions at Students' Instructional Farm, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya (U.P.) during Rabi 2020-21 on chickpea cultivar of PUSA-262 in Randomized Block Design (RBD) with 10 treatments and 3 replications. The unit plot size kept 1.50×2.50m of each with line to line 30 cm spacing and plant to plant spacing 10cm. The observation on *H. armigera* larval population was taken on mean larval population per metre row length basis. The larval population of H. armigera was recorded at a day before spraying and 3, 7 and 15 days after application of treatments at each spraying. The Benefit-Cost Ratio worked out for each treatment on the basis of additional return over control in terms rupees and cost of insecticidal spray in each treatment The data obtained were analyzed statistically to compare the treatment effects for randomized block design (Panse and Sukhatme, 1961).

Treatm ents	Chemical name	Trade name	Strength of pesticide	Dose of Insecticides (g/ml) or Concentration (%) dose/ha	Source of availability					
T1	Spinosad	Tracer	45% SC	60g a.i	Dow Agro Science					
T2	Chlorantraniliprole	Coragen	18.5% SC	25g a.i.	FMC India Private Limited					
Т3	Emamectin benzoate	Emagold	5% SG	12g a.i	Alfa Crop Science, Raipur (C.G.)					
T4	Flubendaimide	Fame	39.35% SC	60g a.i	Bayer Crop Science Limited, Mumbai					
Т5	Cyantraniliprole	Benevia	10.26% w/w OD	60g a.i	FMC India Private Limited					
T6	Indoxacarb	Isacarb	14.5% SC	60g a.i	Isagro Agrochemicals Private Limited					
Τ7	Lambda Cyhalothrin	Karate	5% SC	30g a.i.	Syngenta Agrochemicals Limited					
T8	Novaluron	Rimone	10% EC	75g a.i.	Indofil Industries Limited					
Т9	Fipronil	Regent	5% SC	50g a.i.	Bayer Crop Science Limited, Mumbai					
T10	Control (Water spray)	-	-	500 L	-					

Table 1: Details of different insecticides and their source used in the present investigation

Results and Discussion

Bioefficacy of certain new molecule of insecticides against larval population *H. armigera*

The initial count of *H. armigera* larvae revealed that the pest population was distributed homogenously throughout the experimental field a day before application of treatments on the crop during the *Rabi* 2020-21 (Table 1 and Figure 1 & 2).

First spray

Pre-treatment observation was recorded a day before the application of insecticides, which revealed the uniform distribution of pod borer in the field. The data pertaining efficacy of the first spray was obtained and presented in Table 1 and Figure 1 indicates that the population a day before was ranged from 5.11 to 6.00 larvae/mrl. The data obtained from 3 DAS (Days after spray) revealed that reduction in larval population was recorded in all treated plots in comparison to the untreated plot. However, among all the treatments the minimum larval population was found in treatment T₂-Chlorantraniliprole 25g a.i./ha (3.00 larvae/mrl) followed by the treatment T₅- Cyantraniliprole 60g a.i./ha (3.33 larvae/mrl) and highest in treatment T₇- Lambda Chylothrin 30g a.i./ha (4.67 larvae/mrl). The observation recorded at 7 DAS revealed that the minimum population was found in T₂- Chlorantraniliprole 25g a.i./ha (0.78 larvae/mrl) followed by T₅- Cyantraniliprole 25g a.i./ha (0.89 larvae/mrl), and maximum in the treatment T₉-Fipronil 50g a.i./ha (2.44 larvae/mrl). The data noted at 15 DAS depicted that all the treatments were significantly superior to over control and treatment T₂- Chlorantraniliprole 25g a.i./ha (1.11 larvae/mrl) was the most effective treatment recorded the lowest population over control followed by T₅-Cyantraniliprole 60g a.i./ha (1.22 larvae/mrl) and treatment T₉- Fipronil 50g a.i./ha (3.22 larvae/mrl) least effective treatment recorded the highest population over control. The overall mean population of 3, 7 and 15 DAS indicate that all treated plots were significantly outperformed over control. However, among the all treatments minimum larval population was found in T₂-Chlorantraniliprole 25g a.i./ha (1.63 larvae/mrl) and T₅- Cyantraniliprole 60g a.i./ha (1.81 larvae/mrl), which were most effective treatments in reducing

the larval populations and T₉- Fipronil 50 a.i./ha (3.22 larvae/mrl) had maximum population.

Second spray

The data pertaining population recorded a day before second spray varied in the range of 5.67 to 6.00 larvae mrl⁻¹ (Table 1 and Figure 2). The data recorded at 3 DAS revealed that minimum larval population was recorded in T₂-Chlorantraniliprole 25g a.i./ha (3.33 larvae/ mrl) followed by T₅-Cyantraniliprole 60g a.i./ha (3.67 larvae/mrl) and minimum population was found in T₆-Indoxacarb 60g a.i./ha (5.11 larvae/mrl).The data noted at 7 DAS depicted that the lowest population was found T₂-Chlorantraniliprole 25g a.i./ha in (1.33)larvae/mrl) followed by T5-Cyantraniliprole 60g a.i./ha (1.44 larvae/mrl) and highest population was found in T₉-Fipronil 50g a.i./ha (3.44 larvae/mrl). At 15 DAS that the minimum population was recorded in T₂-Chlorantraniliprole 25g a.i./ha (1.44 larvae/mrl) followed by T₅-Cyantraniliprole 60g a.i./ha (1.56 larvae/mrl) and minimum population was found in T₉-Fipronil 50g a.i./ha (3.56 larvae/mrl). The records on overall insecticidal efficacy revealed that the treatments were statistically superior to control. The overall population after second spraying indicated that treatment T₂-Chlorantraniliprole 25g a.i./ha (1.96 larvae/mrl) was superior to the remaining treatments followed by T5-Cyantraniliprole 60g a.i./ha (1.15 larvae/mrl), whereas treatment T₉-Fipronil 50g a.i./ha (3.56 larvae/mrl) was least effective treatment after second insecticidal spray. The results are in conformity with the Chitralekha et al. (2018) who tested Novaluron 10 % EC @ 375 ml/ha, quinalphos 25 % EC @ 1000 ml/ha, Chlorantraniliprole 18.5 % SC @ 135 ml/ha, Lambda- Cyhalothrin 5 % EC @ 500 ml/ha, and emamectin benzoate 5 % SG @ 220 g/ha against gram pod borer at the population of larvae reached at economic threshold, *i.e.* l larvae/mrl on chickpea. All the treatments had resulted significantly better than untreated control; Chlorantraniliprole (18.5% SC) had the highest per cent larvae reduction compared to control (85.68%). The similar results also reported by Rani et al. (2018) who found that Emamectin benzoate 5% SG, Flubendamide 20% WG, Chlorantraniliprole 20% SC, Thiodicarb 75% WP, Indoxacarb 14.5% SC, Novaluron 10% EC were effective against the larval population of H.

Tr.	Treatments	Dose/ha	*Mean larval population of <i>H. armigera</i> per metre row length **F								**Pod		
No.			First Spray					Second Spray					damage (%)
			DBS	3 DAS	7 DAS	15 DAS	Mean	DBS	3 DAS	7 DAS	15 DAS	Mean	
T ₁	Spinosad	60g a.i	5.22	3.78	1.67	2.22	2.56	5.78	4.00	2.00	2.56	2.85	12.00
	-		(2.39)	(2.07)	(1.47)	(1.65)	(1.75)	(2.51)	(2.12)	(1.58)	(1.75)	(1.83)	(20.77)
T ₂	Chlorantraniliprole	25g a.i.	5.11	3.00	0.78	1.11	1.63	5.67	3.33	1.33	1.44	1.96	2.00
	-		(2.37)	(1.87)	(1.13)	(1.27)	(1.46)	(2.48)	(1.96)	(1.35)	(1.39)	(1.57)	(8.13)
T 3	Emamectin benzoate	12g a.i.	5.78	3.89	1.33	2.11	2.44	5.89	4.22	2.11	2.44	2.78	9.33
			(2.51)	(2.09)	(1.35)	(1.62)	(1.72)	(2.53)	(2.17)	(1.62)	(1.72)	(1.81)	(17.79
T ₄	Flubendiamide	60g a.i.	5.67	4.44	1.22	1.89	2.52	5.67	4.67	1.67	2.22	2.81	7.33
			(2.48)	(2.22)	(1.31)	(1.55)	(1.74)	(2.48)	(2.27)	(1.47)	(1.65)	(1.82)	(15.21)
T 5	Cyantraniliprole	60g a.i	5.44	3.33	0.89	1.22	1.81	5.78	3.67	1.44	1.56	2.15	4.67
			(2.44)	(1.96)	(1.18)	(1.31)	(1.52)	(2.51)	(2.04)	(1.39)	(1.43)	(1.63)	(12.48)
T 6	Indoxacarb	60g a.i.	5.11	4.33	1.89	2.56	2.93	5.67	5.11	2.44	2.89	3.41	12.00
			(2.37)	(2.20)	(1.55)	(1.75)	(1.85)	(2.48)	(2.37)	(1.72)	(1.84)	(1.98)	(20.27)
T ₇	Lambda Cyhalothrin	30g a.i	6.00	4.67	1.89	2.78	3.11	5.89	4.78	2.78	3.11	3.52	15.33
		_	(2.55)	(2.27)	(1.55)	(1.81)	(1.90)	(2.53)	(2.30)	(1.81)	(1.90)	(2.00)	(23.05)
T8	Novaluron	75g a.i	5.89	4.33	2.33	2.89	3.19	6.00	4.89	2.89	3.22	3.48	14.67
		_	(2.53)	(2.20)	(1.68)	(1.84)	(1.92)	(2.55)	(2.32)	(1.84)	(1.96)	(2.00)	(22.52
Т9	Fipronil	50g a.i	5.67	4.00	2.44	3.22	3.22	6.00	4.33	3.44	3.56	3.56	18.00
		_	(2.48)	(2.12)	(1.72)	(1.93)	(1.93)	(2.55)	(2.20)	(1.99)	(2.01)	(2.01)	(25.10)
T ₁₀	Control (Water Spray)	500 L	5.44	6.67	6.56	7.33	6.85	5.67	7.00	7.44	7.67	7.22	24.67
			(2.44)	(2.68)	(2.66)	(2.80)	(2.71)	(2.48)	(2.74)	(2.82)	(2.86)	(2.78)	(29.78)
S. Em±		0.04	0.07	0.03	0.04	0.08	0.03	0.08	0.06	0.03	0.04	(0.63)	
CD at 5	5%		-	0.22	0.11	0.12	0.24	-	0.25	0.20	0.11	0.13	(1.89)

Table 1: Efficacy of certain new molecule of insecticides against gram pod borer, H. armigera infesting chickpea during Rabi 2020-21

Figures in the parenthesis are $\sqrt{x + 0.5}$ transformed values, **Figures in the parenthesis are Arcsine transformed values, DBS= Day before spray, DAS= Days after spray, *Mean of three replications

First Spray

Figure 1: Effect of certain new molecule of insecticides on gram pod borer, H. armigera during Rabi 2020-21.

Alok et al.

Second Spray

Figure 2: Effect of certain new molecule of insecticides on gram pod borer, H. armigera during Rabi 2020-21.

Tr. No.	Treatments	Dose/ha	Quantity of insecticide formulation/h a	Cost of one Spray (labour+ Sprayer+ insecticide)/ha)	No. of sprays	Total cost of spraying /ha	Yield (q/ha)	Additional yield over control (q/ha)	Total return /ha)	Net return /ha	B:C ratio	Rank
T ₁	Spinosad	60g a.i.	133mL	4454	2	8908	12.80	5.50	28050	19142	2.14	VII
T ₂	Chlorantraniliprole	25g a.i.	135mL	3225	2	6450	14.00	6.70	34170	27720	4.29	III
T 3	Emamectin benzoate	12g a.i.	240g	1790	2	3580	13.10	5.80	29580	26000	6.75	Π
T ₄	Flubendiamide	60g a.i.	152mL	3907	2	7814	13.30	6.00	30600	22786	2.91	V
T ₅	Cyantraniliprole	60g a.i.	584mL	6190	2	12380	13.73	6.43	32793	20413	1.64	VIII
T ₆	Indoxacarb	60g a.i.	413mL	2498	2	4996	12.10	4.80	24480	19484	3.89	IV
T ₇	Lambda Cyhalothrin	30g a.i.	600mL	854	2	1708	10.27	2.97	15147	13439	7.86	Ι
T ₈	Novaluron	75g a.i.	750mL	2810	2	5620	10.15	2.85	14535	8915	1.58	IX
Т9	Fipronil	50 a.i.	1000mL	2450	2	4900	10.80	3.50	17850	12950	2.64	VI
T ₁₀	Control (Water Spray)	500 L	-	-	-	-	7.30	-	-	-		

 Table 2: Economics of certain new molecule of insecticides during Rabi 2020-21

BCR= Benefit Cost Ratio, Minimum support price of chickpea during 2020-21 = Rs. 51/kg, Labour charge = Rs. 300/day/labour, Sprayer charge: 50/day

armigera. Similarly, Upadhyay *et al.* (2020) also reported that the highest efficacy of insecticide after the spray was found in T₃-Chlorantiniprole 18.5 SC 92g a.i. ha⁻¹ (63.05%) and the lowest overall % efficacy was registered in T₈-Acephate 75 WP 750 g a.i. ha⁻¹ (30.04%).

Effect of certain new molecule of insecticides on pod damage

The efficacy of insecticides was tested in terms of pod damage in the field trial for the Rabi 2020-21 (Table 1). The respective results show that each of the individual treatments was significantly efficient than the control. The best result in terms of minimum pod damage was shown by treatment T₂-Chlorantraniliprole 25g a.i./ha (2.00%) followed by T₅- Cyantraniliprole 60g a.i./ha (4.67%) whereas maximum pod damage was recorded from T₉-Fipronil 50g a.i./ha (18.00%) and T7-Lambda Chylothrin 30g a.i./ha (15.33%). The results are in conformity with the Upadhyay et al. (2020) who found that the lowest pod damage was recorded in (4.67%) the treatment followed by T₆-Flubendamide 39.35 EC 49g a.i./ha (5.33%). Rani et al. (2018) reported that application of Chlorantraniliprole in red gram had lowest pod damage caused by gram pod borer.

Effect of certain new molecule of insecticides on yield chickpea

The study made on the effect of insecticidal treatments on yield is shown in Table 2. All treatments showed superior with less pod damage compared to untreated control. Among all treatments the minimum pod damage was 2 per cent with highest yield of chickpea pods (14.00 q/ha) was recorded in T₂-Chlorantraniliprole 25g a.i./ha. The succeeding best treatment was T₅-Cyantraniliprole 60g a.i./ha 13.73 q/ha yield and next best treatment was T₄-Flubendiamide 60g a.i./ha with 13.30 q/ha yield. Among all the treatments T₈- Novaluron 75g a.i./ha produced minimum yield (10.15 q/ha). The results are in conformity with the Upadhyay et al. (2020) who found that the highest yield was recorded in the treatment Chlorantiniprole 18.5 SC 92g a.i./ha (17.33 g/ha) followed by Flubendamide 39.35 EC 49g a.i./ha (16.44 g/ha) and Spinosad 45 SC 74g a.i./ha (15.55 g/ha). Rani et al. (2018) found that use of Chlorantraniliprole in red gram produced higher yield against gram pod borer.

Economics of new molecule of insecticides in Chickpea

The data pertaining to economics of various treatments are presented in Table 2. The highest net return was recorded from T₂-Chlorantraniliprole 25g a.i./ha (Rs. 27720) and the minimum in T_8 -Novaluron 75g a.i./ha (Rs. 8915). The benefit: cost ratio of different insecticides revealed that T7-Lambda Cyhalothrin 30g a.i./ha (7.86:1) was the most economical treatment followed by T₃-Emamectin benzoate 12g a.i./ha (6.75:1), T₂-Chlorantraniliprole 25g a.i./ha (4.29:1), T₆-Indoxacarb 60g a.i./ha (3.89:1), T₄-Flubendiamide 12g a.i./ha (2.91:1), T₉-Fipronil 50g a.i./ha (2.64:1), T₁-Spinosad 60g a.i./ha (2.14:1),T5-Cyantraniliprole 60g a.i./ha (1.64:1) and treatment T₈-Novaluron 75g a.i./ha (1.58:1) was least economical treatment. The present findings are in agreement with Upadhyay et al. (2020) who reported that Lambda Cyhalothrin was second most economical treatment after Indoxacarb. Meena et al. (2018) also found treatment with Indoxacarb (1:9.52) was highly cost effective treatment in chickpea against gram pod borer.

Conclusion

Application of insecticides for the management of insect pests in agriculture ecosystem is one of the most common activities as insecticides provide good control of insect pests in very short span of time. Foliar spray of Chlorantraniliprole 25g a.i./ha and Cyantraniliprole 60g a.i./ha were the most effective insecticides against Helicoverpa armigera with minimum larval population, lowest pod highest vield per damage and hectare. Chlorantraniliprole 25g a.i./ha had highest net return while Lambda Cyhalothrin 30g a.i./ha was most cost effective treatment with highest benefit cost ratio. These insecticides belong to newer group, relatively safer and more effective at lower doses against gram pod borer as comparison to conventional insecticides for management of this key pest of chickpea. The information generated in present study can be suitably incorporated in the management strategies.

Acknowledgement

The authors are highly thankful to Head, Department of Entomology, Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya (U.P.) India for providingessential facilities and support during the experiment.

References

- Anonymous (2013). Directorate of Economics and Statistics, Department of Agriculture and Cooperation. Govt. of India, pp:85-87.
- Anonymous. (2016). International Year of Pulses 2016: National, Regional and International Activities Gather Momentum. (Available at <u>http://sdg.iisd.org/news/international-year-of-pulses-2016national-regional-and-international-activities-gathermomentum/</u> Retrieved on July 30, 2021).
- Anonymous. (2020). Government of India. Ministry of Agriculture & Farmers Welfare. Department of Agriculture, Cooperation & Farmers Welfare. Directorate of Economics & Statistics. 2020. Pocket book of Agricultural Statistics. New Delhi, pp.26.
- Bhatt, N.J., & Patel, R.K. (2001). Screening of chickpea cultivars for their resistance to gram pod borer *Helicoverpa armigera*. *Indian Journal of Entomology*, *63*(3), 277-280.
- Chitralekha, Yadav, G.S., & Verma, T. (2018). Efficacy of insecticides against *Helicoverpa armigera* on chickpea. *Journal of Entomology Zoology Studies*, 6(3), 1058-1061.
- Gill, H.K., & Garg, H. (2014). Pesticides: Environmental Impacts and Management Strategies. University of Florida Press, 192 pp.

for **Conflict of interest**

The authors declare that they have no conflict of interest.

- Meena, R. K., Naqvi, A. R., Meena, D. S. & Shivbhagvan (2018). Evaluation of bio-pesticides and indoxacarb against gram pod borer on chickpea. *Journal of Entomology and Zoology Studies*, 6(2), 2208-2212.
- Naik, R.B., Navadkar, D.S., & Amale, A.J. (2015). Trends in Arrivals and Prices of Chickpea in Western Maharashtra. *Agricultural Situation in India*, 72(1), 5-10.
- Panse, V.G. & Sukhatme, P.V. (1961). Statistical methods for agricultural workers. Indian Council of Agricultural Research, New Delhi.
- Patil, S.B., Goyal, A., Chitgupekar, S.S., Kumar, S. & Mustapha El-Bouhssini (2017). Sustainable management of chickpea pod borer. A review. *Agronomy for Sustainable Development*, 37(20), 1-17.
- Rani, D.S., Kumar, S.P., Venkatesh, M.N., Sri, C.H.N.S., & Kumar, K.A. (2018). Bio efficacy of insecticides against gram pod borer, *Helicoverpa armigera* in Red gram. *Journal of Entomology Zoology Studies*, 6(2), 3173-3176.
- Upadhyay, R.R., Singh, P.S., & Singh, S.K. (2020). Comparative Efficacy and Economics of Certain Insecticides against gram pod borer, *Helicoverpa armigera* (Hübner) in chickpea. *International Journal of Plant Protection*, 48(4), 403-410.
- **Publisher's Note:** ASEA remains neutral with regard to jurisdictional claims in published maps and figures.