Main Article Content
Abstract
Chickpea (Cicer arientinum L.) is one of the most dominant pulse crops in India, which contributes 38 percent of the area and 50 percent production of pulses compare to the total pulse production of India. Chickpea contains protein-2.1%, carbohydrates-61.5%, and fat-4.5% and more iron, calcium and niacin content. The main constrain of chickpea production due to parasitic nematodes (Meloidogyne incognita) is about 14% of total global production in annual yield loss. Pseudomonas fluorescens is a bacterial bio-agent that can help in nematode suppression in chickpea plants. This experiment was conducted to experience the differences, if any, in manganese content concerning chickpea inoculated with M. incognita with a combination of Pseudomonas fluorescens as a bioagent, where different treatments of nematode, bacteria, and chemicals are used sustaining the enhancement of disease resistance in chickpea cultivars RSG 974, GG 5, GNG 2144. The total manganese content of chickpea variety GNG 2144 was found highest in treatment, where only bacteria (P. fluorescens) was inoculated, i.e., 6.44 mg/100g of a root, followed by GG 5, i.e., 5.63 mg/100g of root and RSG 974 was, i.e., 4.14 mg/100g of root respectively. Application of Pseudomonas fluorescence combined or alone gradually increased the manganese concentration in roots of chickpea plants i.e., RSG 974 (4.14 mg/100g), GG 5(5.63 mg/100g), GNG 2144 (6.44 mg/100g) compared to the health check.
Keywords
Article Details
Copyright (c) 2022 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Dogra, N., Yadav, R., Kaur, M., Adhikary, A., Kumar, S., & Ramakrishna, W. (2019). Nutrient enhancement of chickpea grown with plant growth-promoting bacteria in local soil of Bathinda, Northwestern India. Physiology and Molecular Biology of Plants, 25(5), 1251-1259. DOI: https://doi.org/10.1007/s12298-019-00661-9
- Gahoonia, T. S., Ali, R., Malhotra, R. S., Jahoor, A., & Rahman, M. M. (2007). Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. Journal of Plant Nutrition, 30(6), 829-841. DOI: https://doi.org/10.1080/15226510701373213
- Ganguly, A. K., & Dasgupta, D. R. (1983). Chemical changes in Brinjal plant induced by the root-knot nematode, Meloidogyne incognita.
- Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307-319. DOI: https://doi.org/10.1038/nrmicro1129
- Halder, M., Dhar, P. P., Mujib, A. S. M., Khan, M. S., Joardar, J. C., & Akhter, S. (2015). Effect of arbuscular mycorrhiza fungi inoculation on growth and uptake of mineral nutrition in Ipomoea aquatica. Curr. World Environ, 10(1), 67-75. DOI: https://doi.org/10.12944/CWE.10.1.08
- Hoffland, E., Hakulinen, J., & Van Pelt, J. A. (1996). Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology, 86(7), 757-762. DOI: https://doi.org/10.1094/Phyto-86-757
- Howell RK, Krusberg LR (1966) Changes in concentrations of nitrogen and free and bound amino acids in alfalfa and pea infected byDitylenchus dipsaci. Phytopathology 56:1170–1177.
- Jackson, M.L. 1973. Soil Chemical Analysis. Prentice-Hall Pvt. Ltd., New Delhi.
- Krusberg, L. R. (1963). Host response to nematode infection. Annual Review of Phytopathology, 1(1), 219-240. DOI: https://doi.org/10.1146/annurev.py.01.090163.001251
- Martínez, J. I., Gómez-Garrido, M., Gómez-López, M. D., Faz, Á. Martínez-Martínez, S., & Acosta, J. A. (2019). Pseudomonas fluorescens affects nutrient dynamics in plant-soil system for melon production. Chilean journal of agricultural research, 79(2), 223-233. DOI: https://doi.org/10.4067/S0718-58392019000200223
- Mohanty, K. C., Swain, S. C., & Pradhan, T. (1995). Biochemical variations in resistant and susceptible brinjal varieties infected by the root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology, 25(2), 142-146.
- Mohanty KC, Chand MK and Swain SC. 1999. Nutritional status and biochemical alterations in cowpea roots infected by reniform nematode, Rotylenchulus reniformis, Indian Journal of Nematology, 29(1):19-23.
- O’Sullivan & O’Gara (1992). Traits of fluorescent Pseudomonas spp, involved in suppression of plant root pathogens. Microbiological Reviews 56, 662-676. DOI: https://doi.org/10.1128/mr.56.4.662-676.1992
- Palleroni, N.J. (1984) Genus Pseudomonas. In Bergey’s Manual of Systematic Bacteriology, Vol. 1. Krieg, N.R., and Holt, J.G. (eds). Baltimore, MD, USA: Williams & Wilkins, pp. 141–199.
- Randriamamonjy, S., Mouret, A., Metzger, E., Gaudin, P., La, C., Capiaux, H., & Lebeau, T. (2021). 2D distribution of Pseudomonas fluorescens activities at the soil-root interface of sunflower grown on vineyard soils: Effects on copper uptake. Soil Biology and Biochemistry, 108462. DOI: https://doi.org/10.1016/j.soilbio.2021.108462
- Rao, A. V., & Tarafdar, J. C. (1993). Role of VAM fungi in nutrient uptake and growth of cluster bean in an arid soil. Arid Land Research and Management, 7(3), 275-280. DOI: https://doi.org/10.1080/15324989309381357
- Robab, M. I., Hisamuddin, & Azam, T. (2010). Histopathology of roots of Glycine max (L.) Merrill induced by root-knot nematode (Meloidogyne incognita). Archives of Phytopathology and Plant Protection, 43(18), 1758-1767. DOI: https://doi.org/10.1080/03235400802678360
- Sathya, A., Vijayabharathi, R., Srinivas, V., & Gopalakrishnan, S. (2016). Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech, 6(2), 1-6. DOI: https://doi.org/10.1007/s13205-016-0458-y
- Suri, V. K., Choudhary, A. K., Chander, G., & Verma, T. S. (2011). Influence of vesicular-arbuscular mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus-deficient acid Alfisol of western Himalayas. Communications in Soil Science and Plant Analysis, 42(10), 1177-1186. DOI: https://doi.org/10.1080/00103624.2011.566962
- Wei, G., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology. 86(2):221-224 DOI: https://doi.org/10.1094/Phyto-86-221
- Williamson VM, Gleason CA (2003) Plant-nematode interactions. Curr Opin Plant Biol 6(4):327–333. DOI: https://doi.org/10.1016/S1369-5266(03)00059-1
- Zwart, R. S., Thudi, M., Channale, S., Manchikatla, P. K., Varshney, R. K., & Thompson, J. P. (2019). Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives. Frontiers in plant science, 10, 966 DOI: https://doi.org/10.3389/fpls.2019.00966
References
Dogra, N., Yadav, R., Kaur, M., Adhikary, A., Kumar, S., & Ramakrishna, W. (2019). Nutrient enhancement of chickpea grown with plant growth-promoting bacteria in local soil of Bathinda, Northwestern India. Physiology and Molecular Biology of Plants, 25(5), 1251-1259. DOI: https://doi.org/10.1007/s12298-019-00661-9
Gahoonia, T. S., Ali, R., Malhotra, R. S., Jahoor, A., & Rahman, M. M. (2007). Variation in root morphological and physiological traits and nutrient uptake of chickpea genotypes. Journal of Plant Nutrition, 30(6), 829-841. DOI: https://doi.org/10.1080/15226510701373213
Ganguly, A. K., & Dasgupta, D. R. (1983). Chemical changes in Brinjal plant induced by the root-knot nematode, Meloidogyne incognita.
Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307-319. DOI: https://doi.org/10.1038/nrmicro1129
Halder, M., Dhar, P. P., Mujib, A. S. M., Khan, M. S., Joardar, J. C., & Akhter, S. (2015). Effect of arbuscular mycorrhiza fungi inoculation on growth and uptake of mineral nutrition in Ipomoea aquatica. Curr. World Environ, 10(1), 67-75. DOI: https://doi.org/10.12944/CWE.10.1.08
Hoffland, E., Hakulinen, J., & Van Pelt, J. A. (1996). Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology, 86(7), 757-762. DOI: https://doi.org/10.1094/Phyto-86-757
Howell RK, Krusberg LR (1966) Changes in concentrations of nitrogen and free and bound amino acids in alfalfa and pea infected byDitylenchus dipsaci. Phytopathology 56:1170–1177.
Jackson, M.L. 1973. Soil Chemical Analysis. Prentice-Hall Pvt. Ltd., New Delhi.
Krusberg, L. R. (1963). Host response to nematode infection. Annual Review of Phytopathology, 1(1), 219-240. DOI: https://doi.org/10.1146/annurev.py.01.090163.001251
Martínez, J. I., Gómez-Garrido, M., Gómez-López, M. D., Faz, Á. Martínez-Martínez, S., & Acosta, J. A. (2019). Pseudomonas fluorescens affects nutrient dynamics in plant-soil system for melon production. Chilean journal of agricultural research, 79(2), 223-233. DOI: https://doi.org/10.4067/S0718-58392019000200223
Mohanty, K. C., Swain, S. C., & Pradhan, T. (1995). Biochemical variations in resistant and susceptible brinjal varieties infected by the root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology, 25(2), 142-146.
Mohanty KC, Chand MK and Swain SC. 1999. Nutritional status and biochemical alterations in cowpea roots infected by reniform nematode, Rotylenchulus reniformis, Indian Journal of Nematology, 29(1):19-23.
O’Sullivan & O’Gara (1992). Traits of fluorescent Pseudomonas spp, involved in suppression of plant root pathogens. Microbiological Reviews 56, 662-676. DOI: https://doi.org/10.1128/mr.56.4.662-676.1992
Palleroni, N.J. (1984) Genus Pseudomonas. In Bergey’s Manual of Systematic Bacteriology, Vol. 1. Krieg, N.R., and Holt, J.G. (eds). Baltimore, MD, USA: Williams & Wilkins, pp. 141–199.
Randriamamonjy, S., Mouret, A., Metzger, E., Gaudin, P., La, C., Capiaux, H., & Lebeau, T. (2021). 2D distribution of Pseudomonas fluorescens activities at the soil-root interface of sunflower grown on vineyard soils: Effects on copper uptake. Soil Biology and Biochemistry, 108462. DOI: https://doi.org/10.1016/j.soilbio.2021.108462
Rao, A. V., & Tarafdar, J. C. (1993). Role of VAM fungi in nutrient uptake and growth of cluster bean in an arid soil. Arid Land Research and Management, 7(3), 275-280. DOI: https://doi.org/10.1080/15324989309381357
Robab, M. I., Hisamuddin, & Azam, T. (2010). Histopathology of roots of Glycine max (L.) Merrill induced by root-knot nematode (Meloidogyne incognita). Archives of Phytopathology and Plant Protection, 43(18), 1758-1767. DOI: https://doi.org/10.1080/03235400802678360
Sathya, A., Vijayabharathi, R., Srinivas, V., & Gopalakrishnan, S. (2016). Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech, 6(2), 1-6. DOI: https://doi.org/10.1007/s13205-016-0458-y
Suri, V. K., Choudhary, A. K., Chander, G., & Verma, T. S. (2011). Influence of vesicular-arbuscular mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus-deficient acid Alfisol of western Himalayas. Communications in Soil Science and Plant Analysis, 42(10), 1177-1186. DOI: https://doi.org/10.1080/00103624.2011.566962
Wei, G., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology. 86(2):221-224 DOI: https://doi.org/10.1094/Phyto-86-221
Williamson VM, Gleason CA (2003) Plant-nematode interactions. Curr Opin Plant Biol 6(4):327–333. DOI: https://doi.org/10.1016/S1369-5266(03)00059-1
Zwart, R. S., Thudi, M., Channale, S., Manchikatla, P. K., Varshney, R. K., & Thompson, J. P. (2019). Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives. Frontiers in plant science, 10, 966 DOI: https://doi.org/10.3389/fpls.2019.00966