Main Article Content

Abstract

Phosphorus (P) is considered an essential nutrient for all and is also essential from global food security point of view but it is a limited, non-renewable nutrient resource, making its use vitally important. Nowadays, lower productivity in phosphorus availability is major concern. The decreasing ores and suboptimal levels of plant available phosphorus (P) can lead to lower yield. Its interaction with several other plant nutrients makes it very hard for plant availability. Several approaches have been tried and tested and many of them have been found effective, sustainable and cost efficient. However, the need for novel approaches for better phosphorus acquisition like physiological manipulation, better root structure and genetic alteration will help for resource conservation and is environmentally sustainable. But to diagnose environmental impact on excess use of phosphate fertilizers more improvement is required in order so that limited phosphorus stocks can be managed. Thus, there is a need for integrative approach to solve the lower P in soil system.

Keywords

Environmental impact Fertilizer Fixation Macronutrient Sustainable

Article Details

How to Cite
Dev, P. ., Paliyal, S. S., Mridula, Rana, N., & Upadhyay, R. (2022). Strategies and methods for improving phosphorus acquisition and its use efficiency: A review. Environment Conservation Journal, 23(1&2), 22–30. https://doi.org/10.36953/ECJ.021887-2153

References

  1. Ahmad, R., Khalid, A., Arshad, M., Zahir, Z.A., & Naveed, M. (2006). Effect of raw (un-composted) and composted organic waste material on growth and yield of maize (Zea mays L.). Soil Environment, 25 (2), 135– 142.
  2. Akande, M.O., Adediran, J.A., & Oluwatohinbo, F.I. (2005). Effects of rock phosphate amended with poultry manure on soil available P and yield of maize and cowpea. African Journal of Biotechnology, 4(5), 444–448.
  3. Amin, M.G.M., Bech, T.B., Forslund A., Hansen M., Petersen S.O., & Lægdsmand, M. (2014). Redistribution and persistence of microorganisms and steroid hormones after soil-injection of swine slurry. Science of the Total Environment, 1003-1010. DOI: https://doi.org/10.1016/j.scitotenv.2013.07.051
  4. Araujo, A.S.F., Leite, L.F.C., Santos, V.B., & Carneiro, R.F.V. (2019). Soil microbial activity in conventional and organic agricultural systems. Sustainability, 1(2), 268–276. DOI: https://doi.org/10.3390/su1020268
  5. Brady, N.C., & Weil, R.R. (2015). Soil Phosphorus and Potassium. The Nature and Property of Soils, 671-716.
  6. Braum, S.M., & Helmke, P.A. (1995). White lupin utilizes soil phosphorus that is unavailable to soybean. Plant and Soil, 176(1), 95–100. DOI: https://doi.org/10.1007/BF00017679
  7. Carvalho, A. M. D., Bustamante, M. M. D. C., Almondes, Z. A. D. P., & Figueiredo, C. C. D. (2014). Forms of phosphorus in an oxisol under different soil tillage systems and cover plants in rotation with maize. Revista Brasileira de Ciência do Solo, 38, 972–979, https://doi.org/10.1590/s0100-06832014000300029 DOI: https://doi.org/10.1590/S0100-06832014000300029
  8. Cavigelli, M.A., & Thien, S.J. (2003). Phosphorus Bioavailability following Incorporation of Green Manure Crops. Soil Science Society of America, 1, 1186– 1194. DOI: https://doi.org/10.2136/sssaj2003.1186
  9. Cordell, D., Rosemarin, A., Schroder, J.J., & Smit, A.L. (2011). Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747–758. DOI: https://doi.org/10.1016/j.chemosphere.2011.02.032
  10. Feng, G., Song, Y.C., Li, X.L., & Christie, P. (2003). Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 22(2), 139–148. DOI: https://doi.org/10.1016/S0929-1393(02)00133-6
  11. Fitter, A.H., Helgason, T., & Hodge, A. (2011). Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biological Review, 25(1), 68–72. DOI: https://doi.org/10.1016/j.fbr.2011.01.002
  12. Franklin, D., Ozenç, D.B., Ozenç, N., & Cabrera, M. (2015). Nitrogen mineralization and phosphorus release from composts and soil conditioners found in the south-eastern united states. Soil Science Society America, 79(5), 1386. DOI: https://doi.org/10.2136/sssaj2015.02.0077
  13. Gahoonia, T. S., & Nielsen, N.E. (2004a). Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil, 262, 55–62. DOI: https://doi.org/10.1023/B:PLSO.0000037020.58002.ac
  14. Gaynor, J.D., & Findlay, W.I. (1995). Soil and phosphorus loss from conservation and conventional tillage in corn production. Journal of Environment Quality, 24, 734. DOI: https://doi.org/10.2134/jeq1995.00472425002400040026x
  15. Geohring, L.D., McHugh, O.V., Walter, M.T., Steenhuis, T.S., Akhtar, M.S., & Walter, M.F. (2001). Phosphorus transport into drains by macropores after manure applications: Implication for best manure management practices. Soil Science, 166, 896–909. DOI: https://doi.org/10.1097/00010694-200112000-00004
  16. Gokmen, S., & Sencar, O. (1999). Effect of phosphorus fertilizers and application methods on the yield of wheat grown under dryland conditions. Turkish Journal of Agricultural Forages, 23, 393-399.
  17. Grant, C.A., Flaten, D.N., Tomasiewicz, D.J., & Sheppard, S.C. (2001). The importance of early season phosphorus nutrition. Canada Journal of Plant Sciences, 81, 211-224. DOI: https://doi.org/10.4141/P00-093
  18. Guan, L.L., Onuki, H., & Kamino, K. (2000). Bacterial growth stimulation with exogenous siderophore and synthetic N-acylhomoserine lactone autoinducers under iron-limited and low-nutrient conditions. Applied Environment Microbiology, 66, 2797–803. DOI: https://doi.org/10.1128/AEM.66.7.2797-2803.2000
  19. Gunes, A., Nizamettin, A., Metin, T., Ahmet, E., & Ketterings, Q.M. (2009). Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. Soil Science, 172, 385–392. DOI: https://doi.org/10.1002/jpln.200800121
  20. Habai, R., Nwakaego, V., Deusdedit, P., Odeh, I., Singh, A., & Buchan, D. (2016). Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology, 101, 185–193. DOI: https://doi.org/10.1016/j.apsoil.2016.01.006
  21. Haymann, D.S., & Mosse, B. (1971). Plant growth response to vesicular-arbuscular mycorrhiza. I. Growth of Endogone inoculated plants in phosphate deficient soils. New Phytologist, 70, 19-27. DOI: https://doi.org/10.1111/j.1469-8137.1971.tb02504.x
  22. Hinsinger, P. (2001). Bio-availability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant and Soil, 237, 173–195. DOI: https://doi.org/10.1023/A:1013351617532
  23. Hoffland, E., & Wissuwa, W.C. (2006). Organic acid exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant and Soil, 283, 155–162. DOI: https://doi.org/10.1007/s11104-005-3937-1
  24. Hongqing, H., Chunying, T., Chongfa, C., Jizheng, H. & Xueyuan, L. (2001). Availability and residual effects of phosphate rocks and inorganic p fractionation in a red soil of central china. Nutrient Cycle, 59(3), 251–258. DOI: https://doi.org/10.1023/A:1014454705792
  25. Horst, W.J., Kamh, M., Jibrin, J.M., & Chude, V.O. (2011). Agronomic measures for increasing P availability to crops. Plant and Soil, 237(2), 211–223. DOI: https://doi.org/10.1023/A:1013353610570
  26. Jones, G.P.D., Blair, G.J., & Jessop, R.S. (1989). Phosphorus efficiency in wheat - a useful selection criteria. Field Crops Research, 21, 257-264. DOI: https://doi.org/10.1016/0378-4290(89)90007-5
  27. Karamanos, R. (2017). The impact of phosphorus fertilizer placement on crop production. Agricultural Research & Technology, 125-132. DOI: https://doi.org/10.19080/ARTOAJ.2017.11.555817
  28. Khatiwada, R., Hettiarachchi, G.M., Mengel, D.B., & Fei, M. (2012). Speciation of phosphorus in a fertilized, reduced-till soil system: In-field treatment incubation study. Soil Science Society of America Journal, 176-185. DOI: https://doi.org/10.2136/sssaj2011.0299
  29. Kolawole. G.O., & Tian, G. (2007). Phosphorus fractionation and crop performance on an alfisol amended with phosphate rock combined with or without plant residues. African Journal of Biotechnology, 6(16), 1972–1978. DOI: https://doi.org/10.5897/AJB2007.000-2301
  30. Kucey, M.E., Janzen H.H., & Leggett (1989). Microbially mediated increases in plant available phosphorus. Advances in Agronomy, 42(42), 199–221. DOI: https://doi.org/10.1016/S0065-2113(08)60525-8
  31. Kumar, V. (2011). Effect of different organic mulching materials on soil properties of na ‘7’ aonla (EMBLICA OFFICINALIS GAERTN) under rainfed condition of shivalik foothills of himalayas INDIA. The Bioscan, 9(1), 561-564.
  32. Kwabiah, A.B., Stoskopf, N.C., Palm, C.A., Voroney, R.P., Rao, M.R., & Gacheru, E. (2003). Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short-term study in western Kenya. Agriculture Ecosystem Environment, 95(1), 49–59. DOI: https://doi.org/10.1016/S0167-8809(02)00167-6
  33. Lindsay, W.L., Vlek, P.L.G., & Chien, S.H. (1989). Phosphate minerals, in: Dixon J.B., Weed S.B., Soil environment, 2nd ed., Soil Science Society of America, 1089–1130. DOI: https://doi.org/10.2136/sssabookser1.2ed.c22
  34. Liu, X.E., Li, X.G., Guo, R.Y., Kuzyakov, Y., & Li, F.M. (2015). The effect of plastic mulch on the fate of urea-N in rain-fed maize production in a semiarid environment as assessed by 15N-labeling. European Journal of Agronomy, 70, 71-77. DOI: https://doi.org/10.1016/j.eja.2015.07.006
  35. Lynch, J.P. (2007). Roots of the second green revolution. Australian Journal of Botany, 55, 1-20. DOI: https://doi.org/10.1071/BT06118
  36. Lynch, J.P., Brown, K.M. (2001). Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 237, 225–237. DOI: https://doi.org/10.1023/A:1013324727040
  37. Malhi, S.S., Haderlein, L.K., Pauly, D.G., & Johnston, A.M. (2002). Improving fertilizer phosphorus use efficiency. Better Crops, 86(4), 8–9.
  38. Manske, G.G.B., Monasterio, J.I.O., Ginkel, M.V., Gonzalez, R.M., Rajaram, S., Molina, E., & Vlek, P.L.G. 2000. Traits associated with improved Puptake efficiency in CIMMYT's semidwarf spring bread wheat wheat grown on an acid andisol in Mexico. Plant and Soil, 22(1), 189-204. DOI: https://doi.org/10.1023/A:1004727201568
  39. McLachlan, K.D. (1980). Acid phosphatase activity of intact roots and phosphorus nutrition of plants. II. Variation among wheat roots. Australian Journal of Agricultural Research, 31, 441-448. DOI: https://doi.org/10.1071/AR9800441
  40. McLaughlin, M.J., McBeath, T.M., Smernik, R., Stacey, S.P., Ajiboye, B., & Guppy, C. (2011). The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: An Australian perspective. Plant Soil, 349(1–2), 69–87. DOI: https://doi.org/10.1007/s11104-011-0907-7
  41. Medina, A., & Azcon, R. (2010). Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. Journal of soil Science, 10(3), 354–372. DOI: https://doi.org/10.4067/S0718-95162010000100009
  42. Mollier, A., & Pellerin, S. (1999). Maize root system growth and development as influenced by P deficiency. Journal of Experimental Botany, 50, 487–497. DOI: https://doi.org/10.1093/jxb/50.333.487
  43. Mujeeb, F., Hannan, A., & Maqsood, M.A. (2017). Response of maize to diammonium phosphate and farmyard manure application on three different soils. Pakistan Journal of Agricultural Science, 45(3), 13–18.
  44. Nelson, N.O., & Janke, R.R. (2007). ‘Phosphorus sources and management in organic production systems. Horttechnology, 17(4), 442–454. DOI: https://doi.org/10.21273/HORTTECH.17.4.442
  45. Njeru, E.M., Avio, L., Sbrana, C., Turrini, A., Bocci, G., Bàrberi, P., & Giovannetti M. (2014). First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agronomy for Sustainable Development, 34(4), 841–848. DOI: https://doi.org/10.1007/s13593-013-0197-y
  46. Norrish, K., & Rosser, H. (1983). Mineral phosphate, in: Soils, an Australian viewpoint, Academic press, Melbourne, CSIRO/London, UK, Australia, 335–361.
  47. Nuruzzaman, M., Lambers, H., Bolland, M.D.A., & Veneklaas, E.J. (2005). Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant and Soil, 271(1–2), 175–187. DOI: https://doi.org/10.1007/s11104-004-2386-6
  48. Ogbonna, D.N., Isirimah, N.O., & Princewill, E. (2014). Effect of organic wastes compost and microbial activity on the growth of maize in the utisoils in effect of organic waste compost and microbial activity on the growth of maize in the utisoils in Port Harcourt, Nigeria. African Journal of Biotechnology, 11, 62.
  49. Rajmohan, N., & Elango, L. (2005). Nutrient chemistry of groundwater in an intensively irrigated region of southern India. Environmental Geology, 47, 820?830. DOI: https://doi.org/10.1007/s00254-004-1212-z
  50. Randall, P.J. (1995). Genotypic differences in phosphate uptake. In: Genetic manipulation of crop plants to enhance integrated management in cropping systems. I. Phosphorus: Proceedings of an FAO/ ICRISAT Expert Consultancy Workshop Andhra Pradesh, India: International Crops Research Institute for the Semiarid Tropics, 31-47.
  51. Reddy, K.S., Rao, A.S. & Takkar, P.N. (1995). Transformation of fertilizer P in a Vertisol amended with farmyard manure. Biological Fertilizer, 22, 279–282. DOI: https://doi.org/10.1007/BF00382525
  52. Rehim, A., Farooq, M., Ahmad, F., & Hussain, M. (2012). Band placement of phosphorus improves the phosphorus use efficiency and wheat productivity under different irrigation regimes. International Journal of Agriculture and Biology, 727-733.
  53. Rehim, A., Hussain, M., Abid, M., Zia, M., & Ahmad, S., (2012). Phosphorus use efficiency of canola as affected by band placement of phosphorus and farmyard manure on calcareous soils. Pakistan Journal of Botany, 44, 1391-1398.
  54. Reid, D.K. (2011). A modified Ontario P index as a tool for on farm phosphorus management. Canada Journal of Soil Science, 91(3), 455–466. DOI: https://doi.org/10.4141/cjss09088
  55. Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Ryan, M.H., Veneklaas, E.J., Lambers, H., Oberson, A., Culvenor, R.A., & Simpson, R.J. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349, 121–156. DOI: https://doi.org/10.1007/s11104-011-0950-4
  56. Roger, E.D., & Benfey, P.N. (2015). Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology, 32, 93–98. DOI: https://doi.org/10.1016/j.copbio.2014.11.015
  57. Rychel, K., Meurer, K.H.E., Borjesson, G., Stromgren, M., Getahun, G.T., Kirchmann, H., & Katterer, T. (2020). Deep N fertilizer placement mitigated N2O emissions in a Swedish field trial with cereals. Nutrient Cycling in Agroecosystems, 118, 133-148. DOI: https://doi.org/10.1007/s10705-020-10089-3
  58. Simpson, R.J., Oberson, A., Culvenor, R.A, Ryan, M.H., Veneklaas, E.J., Lambers, H., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., & Richardson, A.E. (2011). Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Pakistan journal of agricultural research, 349(1–2). DOI: https://doi.org/10.1007/s11104-011-0880-1
  59. Smith, K.A., Chalmers, A.G., Chambers, B.J., & Christie, P. (2000). Organic manure phosphorus accumulation, mobility and management. Soil Use Management, 14, 154–159. DOI: https://doi.org/10.1111/j.1475-2743.1998.tb00634.x
  60. Smith, S.E., & Smith, F.A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62(1), 227–250. DOI: https://doi.org/10.1146/annurev-arplant-042110-103846
  61. Sullivan, D.M., Bary, A.I., Nartea, T.J., Cogger, C.G., & Fransen, S.C. (2003). Nitrogen availability seven years after a high-rate food waste compost application. Compost Science & Utilization, 11(3), 265–275. DOI: https://doi.org/10.1080/1065657X.2003.10702133
  62. Thingstrup, I., Kahiluoto, H. & Jakobsen, I. (2000). Phosphate transport by hyphae of field communities of arbuscular mycorrhizal fungi at two levels of P fertilization. Plant and Soil, 221(2), 181–187. DOI: https://doi.org/10.1023/A:1004721626216
  63. Tian, G., & Kolawole, G.O. (2004). Comparison of various plant residues as phosphate rock amendment on savanna soils of west Africa. Journal of Plant Nutrition, 27(4), 571–583. DOI: https://doi.org/10.1081/PLN-120030368
  64. Ulen, B., Aronsson, H., Bechmann, M., Krogstad, T., Oygarden, L., & Stenberg, M. (2010). Soil tillage methods to control phosphorus loss and potential side-effects: A Scandinavian review. Soil Use Management, 26(2), 94–107. DOI: https://doi.org/10.1111/j.1475-2743.2010.00266.x
  65. Wang, F., Jiang, R., Kertesz, M.A., Zhang, F., & Feng, G. (2013). Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L.). Soil Biology and Biochemistry, 65, 69–74. DOI: https://doi.org/10.1016/j.soilbio.2013.05.010
  66. Wang, X., Wang, G., Turner, N.C., Xing, Y., Li, M., & Guo, T. (2020). Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China. BMC Plant Biology, 20, 282. DOI: https://doi.org/10.1186/s12870-020-02477-2
  67. Xomphoutheb, T., Jiao, S., Guo, X., Mabagala, F.S., Sui, B., Wang, H., Zhao, L., & Zhao, X. (2020). The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in Northeast China. Scientific Reports, 10, 6574 https://doi.org/10.1038/s41598-020-63567-7 DOI: https://doi.org/10.1038/s41598-020-63567-7