Main Article Content


Thermal processing can produce non-enzymatic browning, protein denaturation, flavor alterations, and vitamin loss in food products. A cold plasma treatment, which is non-thermal, is the greatest option for preserving food products, keeping bioactive ingredients, and prolonging shelf life. It is used for brief treatment durations at moderate temperatures. The review's goal is to discuss cold plasma procedures, parameters, and processes for microbial and enzyme inactivation. It also discusses the numerous uses in the dairy business as well as their impact on quality factors. The cold plasma technique shows an excellent performance in the elimination of spoilage microorganisms and maintaining the quality characteristics of food products.


Cold plasma Enzyme inactivation Milk

Article Details

How to Cite
Deshmukh, A., Talwar, G., & Singla, M. (2022). Cold plasma technology – An overview of basics and Principle . Environment Conservation Journal, 23(3), 87–101.


  1. Bahrami, R., Zibaei, R., Hashami, Z., Hasanvand, S., Garavand, F., Rouhi, M., Jafari, S. M., & Mohammadi, R. (2020). Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Critical Reviews in Food Science and Nutrition, 1-15. DOI:
  2. Banu, M. S., Sasikala, P., Dhanapal, A., Kavitha, V., Yazhini, G., & Rajamani, L. (2012). Cold plasma as a novel food processing technology. International Journal of Energy Trends in Engineering and Basic Sciences, 4, 803-818.
  3. Bernard, C., Leduc, A., Barbeau, J., Saoudi, B., L'H, Y., & De Crescenzo, G. (2006). Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study. Journal of Physics D: Applied Physics, 39(16), 3470. DOI:
  4. Calvo, T., Prieto, M., Alvarez-Ordóñez, A., & López, M. (2020). Effect of Non-Thermal Atmospheric Plasma on Food-Borne Bacterial Pathogens on Ready-to Eat Foods: Morphological and Physico-Chemical Changes Occurring on the Cellular Envelopes. Foods, 9, 1865. doi: 10.3390/foods9121865 DOI:
  5. Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9: 441. DOI:
  6. Corradini, M. G. (2020). Modeling microbial inactivation during cold atmospheric-pressure plasma (CAPP) processing. In Advances in Cold Plasma Applications for Food Safety and Preservation (pp. 93-108). Academic Press. DOI:
  7. De Buyser, M. L., Dufour, B., Maire, M., & Lafarge, V. (2001). Implication of milk and milk products in food-borne diseases in France and in different industrialized countries. International Journal of Food Microbiology, 67: 1-17. DOI:
  8. Deilmann, M., Halfmann, H., Bibinov, N., Wunderlich, J., & Awakowicz, P. (2008). Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles. Journal of Food Proteins, 71, 2119-2123. doi: 10.4315/0362-028x-71.10.2119. DOI:
  9. Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11, 115020. doi:10.1088/1367-2630/11/11/115020 DOI:
  10. Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R.,& Weltmann, K. D. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002. DOI:
  11. Feizollahi, E., Iqdiam, B., Vasanthan, T., Thilakarathna, M. S., & Roopesh, M. S. (2020). Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Applied Sciences, 10 (10), 3530. DOI:
  12. Frías, E., Iglesias, Y., Alvarez-Ordóñez, A., Prieto, M., González-Raurich, M., & López, M. (2020). Evaluation of cold atmospheric pressure plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: Impact on microbiological, sensorial and functional quality attributes. Food Research International, 129, 108859. DOI:
  13. Gadri, R. B., Roth, J. R., Montie, T. C., Kelly-Wintenberg, K., Tsai, P. P. Y., Helfritch, D. J., & Team, U. P. S. (2000). Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surface and Coatings Technology, 131(1-3), 528-541. DOI:
  14. Ganesan, A. R., Tiwari, U., Ezhilarasi, P.N., & Rajauria, G. (2021). Application of cold plasma on food matrices: A review on current and future prospects. Journal of Food Processing and Preservation. doi:10.1111/jfpp.15070. DOI:
  15. Gavahian, M., & Khaneghah, A. M. (2019). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 1-12. DOI:
  16. Gillespie, I. A., Adak, G. K., O’Brien, S. J., & Bolton, F. J. (2003). Milkborne general outbreaks of infectious intestinal disease, England and Wales, 1992-2000. Epidemiology & Infection, 130, 461-468. DOI:
  17. Guo, J., Huang, K., & Wang, J. (2015). Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control, 50, 482–490. DOI:
  18. Gurol, C., Ekinci, F. Y., Aslan, N., & Korachi, M. (2012). Low temperature plasma for decontamination of E. coli in milk. International journal of food microbiology, 157(1), 1-5. DOI:
  19. Hosseini, S. M., Rostami, S., Hosseinzadeh Samani, B., & Lorigooini, Z. (2020). The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties. Food Science & Nutrition, 8(2), 870-883. DOI:
  20. Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., & Jo, C. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28, 9–13. DOI:
  21. Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47, 451-456. DOI:
  22. Kulawik, P., Alvarez, C., Cullen, P. J., Aznar-Roca, R., Mullen, A. M., & Tiwari, B. (2018). The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innovative Food Science & Emerging Technologies, 45, 412-417. DOI:
  23. Kusano, Y. (2009). Plasma surface modification at atmospheric pressure. Surface Engineering, 25, 415–416. DOI:
  24. Laroussi, M. (2005). Low-temperature plasma-based sterilization: Overview and state-of the- art. Plasma Process and Polymers, 2, 391–400. DOI:
  25. Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H., & Jo, C. (2011). Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiology, 28, 1468-1471. DOI:
  26. Lee, H. J., Jung, S., Jung, H., Park, S., Choe, W., Ham, J. S., & Jo, C. (2012). Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. Journal of Animal Science and Technology, 54, 191–198. DOI:
  27. Lee, M. B., & Middleton, D. (2003). Enteric illness in Ontario, Canada, from 1997 to 2001. Journal of Food Proteins, 66, 953-961. doi: 10.4315/0362-028x-66.6.953. DOI:
  28. Li, M. W., Xu, G. H., Tian, Y. L., Chen, L., & Fu, H. F. (2004). Carbon dioxide reforming of methane using DC corona discharge plasma reaction. Journal of Physical Chemistry , 108, 1687–1693. DOI:
  29. Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83–91. DOI:
  30. Lindström, M., Myllykoski, J., Sivela, S., & Korkeala, H. (2010). Clostridium botulinum in cattle and dairy products. Critical Reviews in Food Science and Nutrition, 50, 281–304. doi: 10.1080/10408390802544405. DOI:
  31. Mastwijk, H. C., & Groot, M. N. (2010). Use of cold plasma in food processing. In Encyclopedia of biotechnology in agriculture and food (pp. 174-177). Taylor & Francis. DOI:
  32. Misra, N. N. Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131-138. DOI:
  33. Misra, N. N., & Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science and Technology, 64, 74–86. DOI:
  34. Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. DOI:
  35. Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3, 159-170. DOI:
  36. Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology Advances, 26, 610-617. DOI:
  37. Muranyi, P., Wunderlich, J., & Langowski, H. C. (2010). Modification of bacterial structures by a low?temperature gas plasma and influence on packaging material. Journal of applied microbiology, 109(6), 1875-1885. DOI:
  38. Niemira, B. A. (2012). Cold plasma reduction of Salmonella and Escherichia coli O157: H7 on almonds using ambient pressure gases. Journal of Food Science, 77, 171-175. doi: 10.1111/j.1750-3841.2011.02594.x DOI:
  39. Niemira, B. A., & Sites, J. (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food Proteins, 71, 1357-1365. doi: 10.4315/0362-028x-71.7.1357. DOI:
  40. Nishime, T. M. C., Borges, A. C., Koga-Ito, C. Y., Machida, M., Hein, L. R. O., & Kostov, K. G. (2017). Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surface and Coatings Technology, 312, 19-24. DOI:
  41. Noriega, E., Shama, G., Laca, A., Díaz, M., & Kong, M. G. (2011). Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28, 1293-1300. doi: 10.1016/ DOI:
  42. Oliver, S. P., Boor, K. J., Murphy, S. C., & Murinda, S. E. (2009). Food safety hazards associated with consumption of raw milk. Foodborne Pathogens and Disease, 6, 793-806. doi: 10.1089/fpd.2009.0302. DOI:
  43. Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljevi?, V., O'donnell, C. P., Bourke, P., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science and Technology, 35, 5-17.
  44. Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljevi?, V., O'donnell, C. P., Bourke, P., Keener, K. M., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5-17. DOI:
  45. Peng, P., Chen, P., Zhou, N., Schiappacasse, C., Cheng, Y., Chen, D., Addy, M., Zhang, Y., Anderson, E., Fan, L., Hatzenbeller, R., Liu, Y., & Ruan, R. (2019). Packed food and packaging materials disinfected by cold plasma. Advances in Cold Plasma Applications for Food Safety and Preservation, 269–286. doi:10.1016/b978-0-12-814921-8.00009-8 DOI:
  46. Phan, K. T. K., Phan, H. T., Brennan, C. S., & Phimolsiripol, Y. (2017). Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. International Journal of Food Science and Technology, 52, 2127–2137. DOI:
  47. Rana, S., Mehta, D., Bansal, V., Shivhare, U. S., & Yadav, S. K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57(1), 102-112. DOI:
  48. Rankin, S. A., Christiansen, A., Lee, W., Banavara, D. S., & Lopez-Hernandez, A. (2010). The application of alkaline phosphatase assays for the validation of milk product pasteurization. Journal of Dairy Science, 93, 5538-5551. doi: 10.3168/jds.2010-3400. DOI:
  49. Roth, J. R., Nourgostar, S., & Bonds, T. A. (2007). The one atmosphere uniform glow discharge plasma (OAUGDP)—A platform technology for the 21st century. IEEE Transactions on Plasma Science, 35: 233-250. doi: 10.1109/TPS.2007.892711. DOI:
  50. Saragapani, C., Keogh, D. R., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333. DOI:
  51. Sarangapani, C., O'Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies, 44, 235-241. DOI:
  52. Schlüter, O., & Fröhling, A. (2014). Cold plasma for bioefficient food processing. In C. A. Batt, & M.-L. Tortorello (Eds.). Encyclopedia of food microbiology (pp. 948–953). , London: Academic Pressv. 2 DOI:
  53. Schnabel, U., Niquet, R., Schlüter, O., Gniffke, H., & Ehlbeck, J. (2015). Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). J Food Processing and Preservation, 39, 653-662. DOI:
  54. Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181-188. DOI:
  55. Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39, 1591-1597. doi:10.1109/TPS.2011.2142012 DOI:
  56. Surowsky, B., Bußler, S., & Schlüter, O. K. (2016). Cold plasma interactions with food constituents in liquid and solid food matrices. In Cold plasma in food and agriculture (pp. 179-203). Academic Press. DOI:
  57. Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochim Acta Part B: Atomic Spectroscopy, 61, 2–30. DOI:
  58. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: A novel nonthermal technology for food processing. Food Biophysics, 10, 1–11. DOI:
  59. Tolouie, H., Mohammadifar, M. A., Hashemi, M., & Ghomi, H. (2017). Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition, 58, 2583–2597. doi: 10.1080/10408398.2017.1335689. DOI:
  60. Vesel, A., & Mozetic, M. (2012). Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum, 86, 634-637. DOI:
  61. Weltmann, K. D., Brandenburg, R., Von Woedtke, T., Ehlbeck, J., Foest, R., Stieber, M., & Kindel, E. (2008). Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). Journal of Physics D: Applied Physics, 41, 1–6. DOI:
  62. Wiseman, H., & Halliwell, B. (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochemical Journal, 313: 17-29. doi: 10.1042/bj3130017. DOI:
  63. Wu, T. Y., Sun, N. N., & Chau, C. F. (2018). Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. Journal of Food and Drug Analysis, 26, 244-251. DOI:
  64. Yadav, B., Spinelli, A. C., Misra, N. N., Tsui, Y. Y., McMullen, L. M., & Roopesh, M. S. (2020). Effect of in?package atmospheric cold plasma discharge on microbial safety and quality of ready?to?eat ham in modified atmospheric packaging during storage. Journal of food science, 85(4), 1203-1212. DOI:
  65. Yong, H. I., Kim, H. J., Park, S., Alahakoon, A. U., Kim, K., Choeb, W., & Jo, C. (2015a). Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiology, 46, 46–50. DOI:
  66. Yong, H. I., Kim, H. J., Park, S., Kim, K., Choeb, W., Yu, S. J., & Jo, C. (2015b). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin layer dielectric barrier discharge plasma. Food Research International, 69, 57–63. doi: 10.1016/j.foodres.2014.12.008 DOI:
  67. Zhang, H., Ma, D., Qiu, R., Tang, Y., & Du, C. (2017). Non-thermal plasma technology for organically contaminated soil remediation: A review. Chemical Engineering Journal, 313, 157–170. DOI: