Main Article Content

Abstract

Thermal processing can produce non-enzymatic browning, protein denaturation, flavor alterations, and vitamin loss in food products. A cold plasma treatment, which is non-thermal, is the greatest option for preserving food products, keeping bioactive ingredients, and prolonging shelf life. It is used for brief treatment durations at moderate temperatures. The review's goal is to discuss cold plasma procedures, parameters, and processes for microbial and enzyme inactivation. It also discusses the numerous uses in the dairy business as well as their impact on quality factors. The cold plasma technique shows an excellent performance in the elimination of spoilage microorganisms and maintaining the quality characteristics of food products.

Keywords

Cold plasma Enzyme inactivation Milk

Article Details

How to Cite
Deshmukh, A., Talwar, G., & Singla, M. (2022). Cold plasma technology – An overview of basics and Principle . Environment Conservation Journal, 23(3), 87–101. https://doi.org/10.36953/ECJ.8722147

References

  1. Bahrami, R., Zibaei, R., Hashami, Z., Hasanvand, S., Garavand, F., Rouhi, M., Jafari, S. M., & Mohammadi, R. (2020). Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Critical Reviews in Food Science and Nutrition, 1-15. https://doi.org/10.1080/10408398.2020.1848790. DOI: https://doi.org/10.1080/10408398.2020.1848790
  2. Banu, M. S., Sasikala, P., Dhanapal, A., Kavitha, V., Yazhini, G., & Rajamani, L. (2012). Cold plasma as a novel food processing technology. International Journal of Energy Trends in Engineering and Basic Sciences, 4, 803-818.
  3. Bernard, C., Leduc, A., Barbeau, J., Saoudi, B., L'H, Y., & De Crescenzo, G. (2006). Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study. Journal of Physics D: Applied Physics, 39(16), 3470. DOI: https://doi.org/10.1088/0022-3727/39/16/S04
  4. Calvo, T., Prieto, M., Alvarez-Ordóñez, A., & López, M. (2020). Effect of Non-Thermal Atmospheric Plasma on Food-Borne Bacterial Pathogens on Ready-to Eat Foods: Morphological and Physico-Chemical Changes Occurring on the Cellular Envelopes. Foods, 9, 1865. doi: 10.3390/foods9121865 DOI: https://doi.org/10.3390/foods9121865
  5. Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9: 441. DOI: https://doi.org/10.1088/0963-0252/9/4/301
  6. Corradini, M. G. (2020). Modeling microbial inactivation during cold atmospheric-pressure plasma (CAPP) processing. In Advances in Cold Plasma Applications for Food Safety and Preservation (pp. 93-108). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-814921-8.00003-7
  7. De Buyser, M. L., Dufour, B., Maire, M., & Lafarge, V. (2001). Implication of milk and milk products in food-borne diseases in France and in different industrialized countries. International Journal of Food Microbiology, 67: 1-17. https://doi.org/10.1016/S0168-1605(01)00443-3. DOI: https://doi.org/10.1016/S0168-1605(01)00443-3
  8. Deilmann, M., Halfmann, H., Bibinov, N., Wunderlich, J., & Awakowicz, P. (2008). Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles. Journal of Food Proteins, 71, 2119-2123. doi: 10.4315/0362-028x-71.10.2119. DOI: https://doi.org/10.4315/0362-028X-71.10.2119
  9. Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11, 115020. doi:10.1088/1367-2630/11/11/115020 DOI: https://doi.org/10.1088/1367-2630/11/11/115020
  10. Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R.,& Weltmann, K. D. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002. DOI: https://doi.org/10.1088/0022-3727/44/1/013002
  11. Feizollahi, E., Iqdiam, B., Vasanthan, T., Thilakarathna, M. S., & Roopesh, M. S. (2020). Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Applied Sciences, 10 (10), 3530. DOI: https://doi.org/10.3390/app10103530
  12. Frías, E., Iglesias, Y., Alvarez-Ordóñez, A., Prieto, M., González-Raurich, M., & López, M. (2020). Evaluation of cold atmospheric pressure plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: Impact on microbiological, sensorial and functional quality attributes. Food Research International, 129, 108859. DOI: https://doi.org/10.1016/j.foodres.2019.108859
  13. Gadri, R. B., Roth, J. R., Montie, T. C., Kelly-Wintenberg, K., Tsai, P. P. Y., Helfritch, D. J., & Team, U. P. S. (2000). Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surface and Coatings Technology, 131(1-3), 528-541. DOI: https://doi.org/10.1016/S0257-8972(00)00803-3
  14. Ganesan, A. R., Tiwari, U., Ezhilarasi, P.N., & Rajauria, G. (2021). Application of cold plasma on food matrices: A review on current and future prospects. Journal of Food Processing and Preservation. doi:10.1111/jfpp.15070. DOI: https://doi.org/10.1111/jfpp.15070
  15. Gavahian, M., & Khaneghah, A. M. (2019). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 1-12. DOI: https://doi.org/10.1080/10408398.2019.1584600
  16. Gillespie, I. A., Adak, G. K., O’Brien, S. J., & Bolton, F. J. (2003). Milkborne general outbreaks of infectious intestinal disease, England and Wales, 1992-2000. Epidemiology & Infection, 130, 461-468. DOI: https://doi.org/10.1017/S0950268803008525
  17. Guo, J., Huang, K., & Wang, J. (2015). Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control, 50, 482–490. DOI: https://doi.org/10.1016/j.foodcont.2014.09.037
  18. Gurol, C., Ekinci, F. Y., Aslan, N., & Korachi, M. (2012). Low temperature plasma for decontamination of E. coli in milk. International journal of food microbiology, 157(1), 1-5. DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.02.016
  19. Hosseini, S. M., Rostami, S., Hosseinzadeh Samani, B., & Lorigooini, Z. (2020). The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties. Food Science & Nutrition, 8(2), 870-883. DOI: https://doi.org/10.1002/fsn3.1364
  20. Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., & Jo, C. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28, 9–13. https://doi.org/10.1016/j.fm.2010.07.022 DOI: https://doi.org/10.1016/j.fm.2010.07.022
  21. Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47, 451-456. https://doi.org/10.1016/j.foodcont.2014.07.053. DOI: https://doi.org/10.1016/j.foodcont.2014.07.053
  22. Kulawik, P., Alvarez, C., Cullen, P. J., Aznar-Roca, R., Mullen, A. M., & Tiwari, B. (2018). The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innovative Food Science & Emerging Technologies, 45, 412-417. DOI: https://doi.org/10.1016/j.ifset.2017.12.011
  23. Kusano, Y. (2009). Plasma surface modification at atmospheric pressure. Surface Engineering, 25, 415–416. DOI: https://doi.org/10.1179/174329409X389281
  24. Laroussi, M. (2005). Low-temperature plasma-based sterilization: Overview and state-of the- art. Plasma Process and Polymers, 2, 391–400. DOI: https://doi.org/10.1002/ppap.200400078
  25. Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H., & Jo, C. (2011). Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiology, 28, 1468-1471. https://doi.org/10.1016/j.fm.2011.08.002. DOI: https://doi.org/10.1016/j.fm.2011.08.002
  26. Lee, H. J., Jung, S., Jung, H., Park, S., Choe, W., Ham, J. S., & Jo, C. (2012). Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. Journal of Animal Science and Technology, 54, 191–198. https://doi.org/10.5187/JAST.2012.54.3.191. DOI: https://doi.org/10.5187/JAST.2012.54.3.191
  27. Lee, M. B., & Middleton, D. (2003). Enteric illness in Ontario, Canada, from 1997 to 2001. Journal of Food Proteins, 66, 953-961. doi: 10.4315/0362-028x-66.6.953. DOI: https://doi.org/10.4315/0362-028X-66.6.953
  28. Li, M. W., Xu, G. H., Tian, Y. L., Chen, L., & Fu, H. F. (2004). Carbon dioxide reforming of methane using DC corona discharge plasma reaction. Journal of Physical Chemistry , 108, 1687–1693. https://doi.org/10.1021/jp037008q. DOI: https://doi.org/10.1021/jp037008q
  29. Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83–91. https://doi.org/10.1016/j.foodcont.2016.12.021. DOI: https://doi.org/10.1016/j.foodcont.2016.12.021
  30. Lindström, M., Myllykoski, J., Sivela, S., & Korkeala, H. (2010). Clostridium botulinum in cattle and dairy products. Critical Reviews in Food Science and Nutrition, 50, 281–304. doi: 10.1080/10408390802544405. DOI: https://doi.org/10.1080/10408390802544405
  31. Mastwijk, H. C., & Groot, M. N. (2010). Use of cold plasma in food processing. In Encyclopedia of biotechnology in agriculture and food (pp. 174-177). Taylor & Francis. DOI: https://doi.org/10.1081/E-EBAF-120045485
  32. Misra, N. N. Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131-138. https://doi.org/10.1016/j.jfoodeng.2013.10.023. DOI: https://doi.org/10.1016/j.jfoodeng.2013.10.023
  33. Misra, N. N., & Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science and Technology, 64, 74–86. https://doi.org/10.1016/j.tifs.2017.04.005. DOI: https://doi.org/10.1016/j.tifs.2017.04.005
  34. Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39-47. https://doi.org/10.1016/j.tifs.2016.07.001. DOI: https://doi.org/10.1016/j.tifs.2016.07.001
  35. Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3, 159-170. https://doi.org/10.1007/s12393-011-9041-9. DOI: https://doi.org/10.1007/s12393-011-9041-9
  36. Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology Advances, 26, 610-617. https://doi.org/10.1016/j.biotechadv.2008.08.001. DOI: https://doi.org/10.1016/j.biotechadv.2008.08.001
  37. Muranyi, P., Wunderlich, J., & Langowski, H. C. (2010). Modification of bacterial structures by a low?temperature gas plasma and influence on packaging material. Journal of applied microbiology, 109(6), 1875-1885. DOI: https://doi.org/10.1111/j.1365-2672.2010.04815.x
  38. Niemira, B. A. (2012). Cold plasma reduction of Salmonella and Escherichia coli O157: H7 on almonds using ambient pressure gases. Journal of Food Science, 77, 171-175. doi: 10.1111/j.1750-3841.2011.02594.x DOI: https://doi.org/10.1111/j.1750-3841.2011.02594.x
  39. Niemira, B. A., & Sites, J. (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. Journal of Food Proteins, 71, 1357-1365. doi: 10.4315/0362-028x-71.7.1357. DOI: https://doi.org/10.4315/0362-028X-71.7.1357
  40. Nishime, T. M. C., Borges, A. C., Koga-Ito, C. Y., Machida, M., Hein, L. R. O., & Kostov, K. G. (2017). Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surface and Coatings Technology, 312, 19-24. https://doi.org/10.1016/j.surfcoat.2016.07.076. DOI: https://doi.org/10.1016/j.surfcoat.2016.07.076
  41. Noriega, E., Shama, G., Laca, A., Díaz, M., & Kong, M. G. (2011). Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28, 1293-1300. doi: 10.1016/j.fm.2011.05.007. DOI: https://doi.org/10.1016/j.fm.2011.05.007
  42. Oliver, S. P., Boor, K. J., Murphy, S. C., & Murinda, S. E. (2009). Food safety hazards associated with consumption of raw milk. Foodborne Pathogens and Disease, 6, 793-806. doi: 10.1089/fpd.2009.0302. DOI: https://doi.org/10.1089/fpd.2009.0302
  43. Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljevi?, V., O'donnell, C. P., Bourke, P., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science and Technology, 35, 5-17. https://doi.org/10.1016/j.tifs.2013.10.009.
  44. Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljevi?, V., O'donnell, C. P., Bourke, P., Keener, K. M., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5-17. https://doi.org/10.1016/j.tifs.2013.10.009. DOI: https://doi.org/10.1016/j.tifs.2013.10.009
  45. Peng, P., Chen, P., Zhou, N., Schiappacasse, C., Cheng, Y., Chen, D., Addy, M., Zhang, Y., Anderson, E., Fan, L., Hatzenbeller, R., Liu, Y., & Ruan, R. (2019). Packed food and packaging materials disinfected by cold plasma. Advances in Cold Plasma Applications for Food Safety and Preservation, 269–286. doi:10.1016/b978-0-12-814921-8.00009-8 DOI: https://doi.org/10.1016/B978-0-12-814921-8.00009-8
  46. Phan, K. T. K., Phan, H. T., Brennan, C. S., & Phimolsiripol, Y. (2017). Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. International Journal of Food Science and Technology, 52, 2127–2137. https://doi.org/10.1111/ijfs.13509. DOI: https://doi.org/10.1111/ijfs.13509
  47. Rana, S., Mehta, D., Bansal, V., Shivhare, U. S., & Yadav, S. K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57(1), 102-112. DOI: https://doi.org/10.1007/s13197-019-04035-7
  48. Rankin, S. A., Christiansen, A., Lee, W., Banavara, D. S., & Lopez-Hernandez, A. (2010). The application of alkaline phosphatase assays for the validation of milk product pasteurization. Journal of Dairy Science, 93, 5538-5551. doi: 10.3168/jds.2010-3400. DOI: https://doi.org/10.3168/jds.2010-3400
  49. Roth, J. R., Nourgostar, S., & Bonds, T. A. (2007). The one atmosphere uniform glow discharge plasma (OAUGDP)—A platform technology for the 21st century. IEEE Transactions on Plasma Science, 35: 233-250. doi: 10.1109/TPS.2007.892711. DOI: https://doi.org/10.1109/TPS.2007.892711
  50. Saragapani, C., Keogh, D. R., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333. https://doi.org/10.1016/j.foodchem.2017.05.016. DOI: https://doi.org/10.1016/j.foodchem.2017.05.016
  51. Sarangapani, C., O'Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies, 44, 235-241. DOI: https://doi.org/10.1016/j.ifset.2017.02.012
  52. Schlüter, O., & Fröhling, A. (2014). Cold plasma for bioefficient food processing. In C. A. Batt, & M.-L. Tortorello (Eds.). Encyclopedia of food microbiology (pp. 948–953). , London: Academic Pressv. 2 DOI: https://doi.org/10.1016/B978-0-12-384730-0.00402-X
  53. Schnabel, U., Niquet, R., Schlüter, O., Gniffke, H., & Ehlbeck, J. (2015). Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). J Food Processing and Preservation, 39, 653-662. https://doi.org/10.1111/jfpp.12273. DOI: https://doi.org/10.1111/jfpp.12273
  54. Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181-188. DOI: https://doi.org/10.1016/j.fbp.2016.01.010
  55. Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39, 1591-1597. doi:10.1109/TPS.2011.2142012 DOI: https://doi.org/10.1109/TPS.2011.2142012
  56. Surowsky, B., Bußler, S., & Schlüter, O. K. (2016). Cold plasma interactions with food constituents in liquid and solid food matrices. In Cold plasma in food and agriculture (pp. 179-203). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-801365-6.00007-X
  57. Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochim Acta Part B: Atomic Spectroscopy, 61, 2–30. https://doi.org/10.1016/j.sab.2005.10.003. DOI: https://doi.org/10.1016/j.sab.2005.10.003
  58. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: A novel nonthermal technology for food processing. Food Biophysics, 10, 1–11. https://doi.org/10.1007/s11483-014-9382-z. DOI: https://doi.org/10.1007/s11483-014-9382-z
  59. Tolouie, H., Mohammadifar, M. A., Hashemi, M., & Ghomi, H. (2017). Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition, 58, 2583–2597. doi: 10.1080/10408398.2017.1335689. DOI: https://doi.org/10.1080/10408398.2017.1335689
  60. Vesel, A., & Mozetic, M. (2012). Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum, 86, 634-637. https://doi.org/10.1016/j.vacuum.2011.07.005. DOI: https://doi.org/10.1016/j.vacuum.2011.07.005
  61. Weltmann, K. D., Brandenburg, R., Von Woedtke, T., Ehlbeck, J., Foest, R., Stieber, M., & Kindel, E. (2008). Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). Journal of Physics D: Applied Physics, 41, 1–6. DOI: https://doi.org/10.1088/0022-3727/41/19/194008
  62. Wiseman, H., & Halliwell, B. (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochemical Journal, 313: 17-29. doi: 10.1042/bj3130017. DOI: https://doi.org/10.1042/bj3130017
  63. Wu, T. Y., Sun, N. N., & Chau, C. F. (2018). Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. Journal of Food and Drug Analysis, 26, 244-251. https://doi.org/10.1016/j.jfda.2017.03.005. DOI: https://doi.org/10.1016/j.jfda.2017.03.005
  64. Yadav, B., Spinelli, A. C., Misra, N. N., Tsui, Y. Y., McMullen, L. M., & Roopesh, M. S. (2020). Effect of in?package atmospheric cold plasma discharge on microbial safety and quality of ready?to?eat ham in modified atmospheric packaging during storage. Journal of food science, 85(4), 1203-1212. DOI: https://doi.org/10.1111/1750-3841.15072
  65. Yong, H. I., Kim, H. J., Park, S., Alahakoon, A. U., Kim, K., Choeb, W., & Jo, C. (2015a). Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiology, 46, 46–50. https://doi.org/10.1016/j.fm.2014.07.010. DOI: https://doi.org/10.1016/j.fm.2014.07.010
  66. Yong, H. I., Kim, H. J., Park, S., Kim, K., Choeb, W., Yu, S. J., & Jo, C. (2015b). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin layer dielectric barrier discharge plasma. Food Research International, 69, 57–63. doi: 10.1016/j.foodres.2014.12.008 DOI: https://doi.org/10.1016/j.foodres.2014.12.008
  67. Zhang, H., Ma, D., Qiu, R., Tang, Y., & Du, C. (2017). Non-thermal plasma technology for organically contaminated soil remediation: A review. Chemical Engineering Journal, 313, 157–170. https://doi.org/10.1016/j.cej.2016.12.067. DOI: https://doi.org/10.1016/j.cej.2016.12.067