Main Article Content

Abstract

Nowadays the treatment of environmental pollutants such as synthetic dyes (used in multiple industries such as paper, textile, food, plastic and pharmaceutical) has received much attention, especially for biotechnological treatments using both native and artificial enzymes. In this context, many enzymes have been reported to efficiently perform dye degradation. Peroxidase is one such enzyme, which causes dye degradation either by precipitation of chemical structure of aromatic dyes or by opening up their aromatic ring structure. In the present study an extra-cellular peroxidase extracted from a bacterial strain Bacillus sp. F31 JX984444.1 was tested for its capability to decolorize 16 different dyes used in various industries. Out of 16 different textile dyes the Bacillus sp. peroxidase efficiently decolorized 5 dyes out of which 4 triphenyl methane dyes (Basic Fuchsin (BF), Rhodamine B (RB), Coomassie Brilliant Blue (CBBG) and Malachite Green (MG) showed decolorization up to 95.5%, 70.8%, 70% and 40%, respectively, while a polymeric heterocyclic dye Methylene Blue (MB) showed 66.2% decolorization. These 5 dyes were studied to further enhance their decolorization by peroxidase after purification by optimizing different reaction conditions (temperature, time, enzyme concentration, buffer pH, dye concentration and effect of various salt ions, H2O2 concentration). This study indicates that the extracellular peroxidase (purified) from Bacillus sp. can be used as a useful tool for the treatment (degradation/decolorization) of industrial effluents contaminated with harmful industrial dyes.

Keywords

Degradation Haem Industrial effluent Oxidoreductase enzyme Pollutants

Article Details

How to Cite
K., N., & Kanwar , S. S. . (2022). Biodegradation of harmful industrial dyes by an extra-cellular bacterial peroxidase . Environment Conservation Journal, 23(3), 217–232. https://doi.org/10.36953/ECJ.8702144

References

  1. Alam, M., & Pathak, J. K. (2010). Rapid assessment of water quality index of Ramganga 318 River, Western Uttar Pradesh (India) using a computer programme. Nature and Science, 8(11), 1–8.
  2. Al-Tohamy, R., Kenawy, E. R., Sun, J., & Ali, S. S. (2021). Performance of a newly isolated salt-tolerant yeast strain Sterigmatomyces halophilus SSA-1575 for azo dye decolorization and detoxification. Frontiers in Microbiology, 11, 1163. https://doi.org/10.3389/fmicb.2020.01163 DOI: https://doi.org/10.3389/fmicb.2020.01163
  3. Al-Tohamy, R., Sun, J., Fareed, M. F., Kenawy, E. R., & Ali, S. S. (2020). Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Scientific Reports, 10(1), 12370. https://doi.org/10.1038/s41598-020-69304-4 DOI: https://doi.org/10.1038/s41598-020-69304-4
  4. Anjali, P., Poonam S., & Leela, I. (2007). Bacterial decolorization and degradation of azo dyes, International Biodeterioration and Biodegradation, 59, 73–84. DOI: https://doi.org/10.1016/j.ibiod.2006.08.006
  5. Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2021). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 26(13), 3813. https://doi.org/10.3390/molecules26133813 DOI: https://doi.org/10.3390/molecules26133813
  6. Arif, A., Malik, M. F., Liaqat, S., Aslam, A., Mumtaz, K., Mahmood, Ch., Nisa, K., Khurshid, F., Arif, F., & Zaib, Kh. M. S. (2020). Water pollution and industries. Pure and Applied Biology, 9(4), 2214. https://doi.org/10.19045/bspab.2020.90237 DOI: https://doi.org/10.19045/bspab.2020.90237
  7. Bao, J., Xu, S., Zhao, L., Peng, G., & Lu, H. (2020). Colorimetric and fluorescent dual-mode strategy for sensitive detection of sulfide: Target-induced horseradish peroxidase deactivation. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 236(236), 118296. https://doi.org/10.1016/j.saa.2020.118296 DOI: https://doi.org/10.1016/j.saa.2020.118296
  8. Barathi, S., Aruljothi, K. N., Karthik, C., & Padikasan, I. A.. (2020). Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue160 textile dye by Bacillus subtilis. Biotechnology Reports, 28, e00522. http://creativecommons.org/licenses/by/4.0/. https://doi.org/10.1016/j.btre.2020.e00522 DOI: https://doi.org/10.1016/j.btre.2020.e00522
  9. Blánquez, A., Rodríguez, J., Brissos, V., Mendes, S., Martins, L. O., Ball, A. S., Arias, M. E., & Hernández, M. (2019). Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi Journal of Biological Sciences, 26(5), 913–920. https://doi.org/10.1016/j.sjbs.2018.05.020 DOI: https://doi.org/10.1016/j.sjbs.2018.05.020
  10. Boucherit, N., Abouseoud, M., & Adour, L. (2013). Degradation of direct azo dye by Cucurbita pepo free and immobilized peroxidase. Journal of Environmental Sciences (China), 25(6), 1235–1244. https://doi.org/10.1016/s1001-0742(12)60102-8 DOI: https://doi.org/10.1016/S1001-0742(12)60102-8
  11. Bovaird, J. H., Ngo, T. T., & Lenhoff, H. M. (1982). Optimizing the o-phenylenediamine assay for horseradish peroxidase: Effects of phosphate and pH, substrate and enzyme concentrations, and stopping reagents. Clinical Chemistry, 28(12), 2423–2426. https://doi.org/10.1093/clinchem/28.12.2423 DOI: https://doi.org/10.1093/clinchem/28.12.2423
  12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999 DOI: https://doi.org/10.1016/0003-2697(76)90527-3
  13. Carmen, Z., & Daniela, S. (2012). Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents- A Critical Overview, organic pollutants, Ten years after the Stockholm convention - Environmental and Analytical Update, Dr. Tomasz Puzyn (Ed.), ISBN: 978-953-307-917-2, InTech, Available from: http://www.intechopen.com/books/organic-pollutants-ten-years after-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes characteristics polluting-effects-and-separation-elimination-procedures-from-in, 3, 55-86. DOI: https://doi.org/10.5772/32373
  14. Celebi, M., Altikatoglu, M., Mustafaeva Akdeste, Z., & Yildirim, H. (2013). Determination of decolorization properties of Reactive Blue 19 dye using Horseradish Peroxidase enzyme. Turkish Journal of Biochemistry, 38(2), 200–206. https://doi.org/10.5505/tjb.2013.96636 DOI: https://doi.org/10.5505/tjb.2013.96636
  15. Chang, Y., Yang, D., Li, R., Wang, T., & Zhu, Y. (2021). Textile dye biodecolorization by manganese peroxidase: A review. Molecules, 26(15), 4403. https://doi.org/10.3390/molecules26154403 DOI: https://doi.org/10.3390/molecules26154403
  16. Chanwun, T., Muhamad, N., Chirapongsatonkul, N., & Churngchow, N. (2013). Hevea brasiliensis cell suspension peroxidase: Purification, characterization and application for dye decolorization. Applied Microbiology and Biotechnology Express, 3(1), 14. https://doi.org/10.1186/2191-0855-3-14 DOI: https://doi.org/10.1186/2191-0855-3-14
  17. Chauhan, V., & Kanwar, S. S. (2020). Impact of industrial dyes on the environment and bacterial peroxidase isolated from Bacillus sp. BTS-P5 as a possible solution. Current Biotechnology, 9(1), 45–56. https://doi.org/10.2174/2211550109666200303110926 DOI: https://doi.org/10.2174/2211550109666200303110926
  18. Chen, C., & Li, T. (2016). Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. Physical Sciences Reviews, 1(9). https://doi.org/10.1515/psr-2016-0051 DOI: https://doi.org/10.1515/psr-2016-0051
  19. Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101(1), 57–68. https://doi.org/10.1016/s0168-1656(02)00303-6 DOI: https://doi.org/10.1016/S0168-1656(02)00303-6
  20. Dawkar, V. V., Jadhav, U. U., Telke, A. A., & Govindwar, S. P. (2009). Peroxidase from Bacillus sp. VUS and its role in the decolorization of textile dyes. Biotechnology and Bioprocess Engineering, 14(3), 361–368. https://doi.org/10.1007/s12257-008-0242-x DOI: https://doi.org/10.1007/s12257-008-0242-x
  21. Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693,108590. https://doi.org/10.1016/j.abb.2020.108590 DOI: https://doi.org/10.1016/j.abb.2020.108590
  22. Dhingra, O. D., & Sinclair, J. B. (1993). Basic Plant Pathology method, 1993 (pp. 179–180). CBS Publishers.
  23. Du, L. N., Wang, S., Li, G., Wang, B., Jia, X. M., Zhao, Y. H., & Chen, Y. L. (2011). Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: Characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology, 20(2), 438–446.https://doi.org/10.1007/s10646-011-0595-3 DOI: https://doi.org/10.1007/s10646-011-0595-3
  24. Faraco, V., Piscitelli, A., Sannia, G., & Giardina, P. (2007). Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World Journal of Microbiology and Biotechnology, 23(6), 889–893. https://doi.org/10.1007/s11274-006-9303-5 DOI: https://doi.org/10.1007/s11274-006-9303-5
  25. Fetyan, N. A., Ali, M. M., & Break, L. M. (2013). Biodegradation of a textile mono azo dye: Reactive violet 5 by a novel isolated bacterial strain. Life Science Journal, 10, 397–403.
  26. Franciscon, E., Grossman, M. J., Paschoal, J. A. R., Reyes, F. G. R., & Durrant, L. R. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus, 1(1), 37. https://doi.org/10.1186/2193-1801-1-37 DOI: https://doi.org/10.1186/2193-1801-1-37
  27. Fujihara, S., Hatashita, M., Sakurai, A., & Sakakibara, M. (2010). Production of manganese peroxidase by white rot fungi from potato-processing wastewater: Role of amino acids on biosynthesis. African Journal of Biotechnology, 9(5), 725-731 DOI: https://doi.org/10.5897/AJB09.1798
  28. Gahlout, M., Gupte, S., & Gupte, A. (2013). Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. Journal of Biotechnology, 3(2), 143–152. https://doi.org/10.1007/s13205-012-0079-z DOI: https://doi.org/10.1007/s13205-012-0079-z
  29. Gholami-Borujeni, F., Mahvi, A. H., Nasseri, S., Faramarzi, M. A., Nabizadeh, R., & Alimohammadi, M. (2011). Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. Applied Biochemistry and Biotechnology, 165(5–6), 1274–1284. https://doi.org/10.1007/s12010-011-9345-5 DOI: https://doi.org/10.1007/s12010-011-9345-5
  30. Gomare, S. S., Jadhav, J. P., & Govindwar, S. P. (2008). Degradation of sulfonated azo dyes by the purified lignin peroxidase from Brevibacillus laterosporus MTCC 2298. Biotechnology and Bioprocess Engineering, 13(2), 136–143. https://doi.org/10.1007/s12257-008-0008-5 DOI: https://doi.org/10.1007/s12257-008-0008-5
  31. Guerra, E., Llompart, M., & Garcia-Jares, C. (2018). Analysis of dyes in cosmetics: Challenges and recent developments. Cosmetics, 5(3), 47. https://doi.org/10.3390/cosmetics5030047 DOI: https://doi.org/10.3390/cosmetics5030047
  32. Guo, W. J., Xu, J. K., Wu, S. T., Gao, S. Q., Wen, G. B., Tan, X., & Lin, Y. W. (2021). Design and engineering of an efficient peroxidase using myoglobin for dye decolorization and lignin bioconversion. International Journal of Molecular Sciences, 23(1). https://doi.org/10.3390/ijms23010413 DOI: https://doi.org/10.3390/ijms23010413
  33. Hong, Y., Dashtban, M., Chen, S., Song, R., & Qin, W. (2012). Enzyme production and lignin degradation by four basidiomycetous fungi in submerged fermentation of peat containing medium. International Journal of Biology, 4(1), 172. https://doi.org/10.5539/ijb.v4n1p172 DOI: https://doi.org/10.5539/ijb.v4n1p172
  34. Hossain, S. M., & Anantharaman, N. (2006). Activity enhancement of ligninolytic enzymes of Trametes versicolor with bagasse powder. African Journal of Biotechnology, 5(2), 189–194.
  35. Huber, P., & Carré, B. (2012). Decolorization of process waters in deinking mills and similar applications: A review. BioResources, 7(1), 1366–1382.
  36. Husain, Q. (2010). Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review. Reviews in Environmental Science and Biotechnology, 9(2), 117–140. https://doi.org/10.1007/s11157-009-9184-9 DOI: https://doi.org/10.1007/s11157-009-9184-9
  37. Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh Kumar, B. (2020). ‘Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. Journal of Cleaner Production, 272. https://doi.org/10.1016/j.jclepro.2020.122636, PubMed: 122636 DOI: https://doi.org/10.1016/j.jclepro.2020.122636
  38. Ili? ?ur?i?, K., Ostafe, R., Prodanovi?, O., ?ur?evi? ?elmaš, A., Popovi?, N., Fischer, R., Schillberg, S., & Prodanovi?, R. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science and Engineering, 15(2), 1–10. https://doi.org/10.1007/s11783-020-1311-4 DOI: https://doi.org/10.1007/s11783-020-1311-4
  39. Irshad, M., & Asgher, M. (2011). Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum commune IBL-06 in solid state medium banana stalks. African Journal of Biotechnology, 10(79), 18234–18242. DOI: https://doi.org/10.5897/AJB11.2242
  40. Jenkins, J. M. X., Noble, C. E. M., Grayson, K. J., Mulholland, A. J., & Anderson, J. L. R. (2021). Substrate promiscuity of a de novo designed peroxidase. Journal of Inorganic Biochemistry, 217, 111370. https://doi.org/10.1016/j.jinorgbio.2021.111370 DOI: https://doi.org/10.1016/j.jinorgbio.2021.111370
  41. Joshi, S. M., Inamdar, S. A., Telke, A. A., Tamboli, D. P., & Govindwar, S. P. (2010). Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. International Biodeterioration and Biodegradation, 64(7), 622–628. https://doi.org/10.1016/j.ibiod.2010.07.001 DOI: https://doi.org/10.1016/j.ibiod.2010.07.001
  42. Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A., & Bhatti, H. N. (2012). Degradation and kinetics of H2O2 assisted photochemical oxidation of Remazol Turquoise Blue. Chemical Engineering Journal, 200–202, 373–379. https://doi.org/10.1016/j.cej.2012.06.058 DOI: https://doi.org/10.1016/j.cej.2012.06.058
  43. Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A., & Bhatti, H. N. (2013). Mechanistic study of a diazo dye degradation by Soybean peroxidase. Chemistry Central Journal, 7(1), 93. https://doi.org/10.1186/1752-153X-7-93 DOI: https://doi.org/10.1186/1752-153X-7-93
  44. Kinnunen, A., Maijala, P., Jarvinen, P., & Hatakka, A. (2017). Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Current Biotechnology, 6(2), 105–115. https://doi.org/10.2174/2211550105666160330205138 DOI: https://doi.org/10.2174/2211550105666160330205138
  45. Krishnaveni, M., & Kowasalya R. (2011). Characterization and decolorization of dye and textile effluent by laccase from Pleurotus florida-a white-rot fungi. International Journal of Pharmacy and Biological Sciences, 2(1), 117-123.
  46. Kurade, M. B., Waghmode, T. R., & Govindwar, S. P. (2011). Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosporus. Journal of Hazardous Materials, 192(3), 1746–1755. https://doi.org/10.1016/j.jhazmat.2011.07.004 DOI: https://doi.org/10.1016/j.jhazmat.2011.07.004
  47. Lauber, C., Schwarz, T., Nguyen, Q. K., Lorenz, P., Lochnit, G., & Zorn, H. (2017). Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus. AMB Express, 7(1), 164. https://doi.org/10.1186/s13568-017-0463-5 DOI: https://doi.org/10.1186/s13568-017-0463-5
  48. Ledakowicz, S., & Pa?dzior, K. (2021). Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules, 26(4), 870. https://doi.org/10.3390/molecules26040870 DOI: https://doi.org/10.3390/molecules26040870
  49. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001 DOI: https://doi.org/10.1016/j.biori.2019.09.001
  50. Liers, C., Bobeth, C., Pecyna, M., Ullrich, R., & Hofrichter, M. (2010). DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Applied Microbiology and Biotechnology, 85(6), 1869–1879. https://doi.org/10.1007/s00253-009-2173-7 DOI: https://doi.org/10.1007/s00253-009-2173-7
  51. Loprasert, S., Negoro, S., & Okada, H. (1988). Thermostable peroxidase from Bacillus stearothermophilus. Journal of General Microbiology, 134(7), 1971–1976. https://doi.org/10.1099/00221287-134-7-1971 DOI: https://doi.org/10.1099/00221287-134-7-1971
  52. Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009 DOI: https://doi.org/10.1016/j.jinorgbio.2010.11.009
  53. Marco-Urrea, E., & Reddy, C. A. (2012). Degradation of chloro-organic pollutants by white rot fungi. In. Environmental Science and Engineering. Springer, (31–66). https://doi.org/10.1007/978-3-642-23789-8_2 DOI: https://doi.org/10.1007/978-3-642-23789-8_2
  54. Mathur, N., & Kumar, A. (2013). Decolorization of methyl red by an isolated Pseudomonas putida strain MR1. African Journal of Microbiology Research, 7(12), 983–989.
  55. Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere, 58(8), 1097–1105. https://doi.org/10.1016/j.chemosphere.2004.09.070 DOI: https://doi.org/10.1016/j.chemosphere.2004.09.070
  56. Mohanty, S. S., & Kumar, A. (2021). Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. Scientific Reports, 11(1), 7678. https://doi.org/10.1038/s41598-021-87227-6 DOI: https://doi.org/10.1038/s41598-021-87227-6
  57. Morsy, S. A. G. Z., Ahmad Tajudin, A., Ali, M., Mohamad, S., & Shariff, F. M. (2020). Current development in decolorization of synthetic dyes by immobilized laccases-mini review. Frontiers in microbiology, 11, 2350. doi: 10.3389/fmicb.2020.572309 DOI: https://doi.org/10.3389/fmicb.2020.572309
  58. Ogubue C. J., & Sawidis, T. (2012). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophilia isolated from industrial effulent. Biotechnology Research International, PubMed: 967925. https://doi.org/10.4061/2011/967925 DOI: https://doi.org/10.4061/2011/967925
  59. Ong, S. T., Keng, P. S., Lee, W. N., Ha, S. T., & Hung, Y. T. (2011). Dye waste treatment. Water, 3(1), 157–176. https://doi.org/10.3390/w3010157 DOI: https://doi.org/10.3390/w3010157
  60. Pal, S., & Vimala, Y. (2012). Bioremediation and decolorization of distillery effluent by novel microbial consortium. European Journal of Experimental Biology, 2(3), 496–504.
  61. Pandey, V. P., Bhagat, P. K., Prajapati, R., Jaiswal, N., Singh, S., Awasthi, M., & Dwivedi, U. N. (2016). A defense associated peroxidase from lemon having dye decolorizing ability and offering resistance to heat, heavy metals and organic solvents. Journal of Biochemistry & Analytical Biochemistry, 5(291), 2161-1009. https://doi.org/10.4172/2161-1009.1000291 DOI: https://doi.org/10.4172/2161-1009.1000291
  62. Pereira, A. R., Sedenho, G. C., Souza, J. C. P., & Crespilho, F. N. (2018). Advances in enzyme bioelectrochemistry. Anais da Academia Brasileira de Ciências, 90(1) Suppl. 1, 825–857. https://doi.org/10.1590/0001-3765201820170514 DOI: https://doi.org/10.1590/0001-3765201820170514
  63. Qin, X., Luo, H., Zhang, X., Yao, B., Ma, F., & Su, X. (2018). Dye-decolorizing peroxidases in Irpex lacteus combining the catalytic properties of heme peroxidases and laccase play important roles in ligninolytic system. Biotechnology for Biofuels, 11(1), 302. https://doi.org/10.1186/s13068-018-1303-9 DOI: https://doi.org/10.1186/s13068-018-1303-9
  64. Ramachandran, P., Sundharam, R., Palaniyappan, J., & Munusamy, A. P. (2013). Potential process implicated in bioremediation of textile effluents: A review. Advances in Applied Science Research, 4(1), 131–145.
  65. Renugadevi, R., Ayyappadas, M. P., Preethy, P. H., & Savetha, S. (2011). Isolation, screening and induction of mutation in strain for extra cellular lignin peroxidase producing bacteria from soil and its partial purification. Journal of Research in Biology, 4, 312–318.
  66. Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays in Biochemistry, 59, 1–41. https://doi.org/10.1042/bse0590001 DOI: https://doi.org/10.1042/bse0590001
  67. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative [Review]. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/s0960-8524(00)00080-8 DOI: https://doi.org/10.1016/S0960-8524(00)00080-8
  68. Roushdy, M. M., Abdel-Shakour, E. H., & El-Agamy, E. I. (2011). Biotechnological approach for lignin peroxidase (lip) production from agricultural wastes (rice husk) by Cunninghamella elegans. Journal of American Science, 7, 6–13.
  69. Saladino, R., Guazzaroni, M., Crestini, C., & Crucianelli, M. (2013). Dye degradation by layer?by?layer immobilised peroxidase/redox mediator systems. ChemCatChem, 5(6), 1407–1415. https://doi.org/10.1002/cctc.201200660 DOI: https://doi.org/10.1002/cctc.201200660
  70. Salvachúa, D., Prieto, A., Mattinen, M. L., Tamminen, T., Liitiä, T., Lille, M., Willför, S., Martínez, A. T., Martínez, M. J., & Faulds, C. B. (2013). Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking. Enzyme and Microbial Technology, 52(6–7), 303–311. https://doi.org/10.1016/j.enzmictec.2013.03.010 DOI: https://doi.org/10.1016/j.enzmictec.2013.03.010
  71. Satapathy, P. K., Randhawa, N. S., & Das, N. N. (2012). Oxidative decolorization of methylene blue by leached sea-nodule residues generated by the reduction-roasting ammoniacal leaching process. Environmental Technology, 33(4–6), 515–522. https://doi.org/10.1080/09593330.2011.584567 DOI: https://doi.org/10.1080/09593330.2011.584567
  72. Šekuljica, N. Ž, Prlainovi?, N. Ž, Stefanovi?, A. B., Žuža, M. G., ?i?kari?, D. Z., Mijin, D. Ž, & Kneževi?-Jugovi?, Z. D. (2020). Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study. The Scientific World Journal, 2015, 371625. https://doi.org/10.1155/2015/371625 DOI: https://doi.org/10.1155/2015/371625
  73. Shah, M. P. (2013). Microbial degradation of textile dye (Remazol Black B) by Bacillus sp. ELT. Journal of Applied and Environmental Microbiology, 1, 6–11. http://pubs.sciepub.com/jaem/1/1/2
  74. Shin, K., Oh, I., & Kim, C. (1998). Production and purification of Remazol brilliant blue R decolourizing peroxidase from the culture filtrate of Pleurotus ostreatus. Journal of Applied and Environmental Microbiology, 63, 1744–1748. DOI: https://doi.org/10.1128/aem.63.5.1744-1748.1997
  75. Si, J., & Cui, B. K. (2013). A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. Journal of Molecular Catalysis B: Enzymatic, 89, 6–14. https://doi.org/10.1016/j.molcatb.2012.12.002 DOI: https://doi.org/10.1016/j.molcatb.2012.12.002
  76. Silva, M. C., Corrêa, A. D., Amorim, M. T. S. P., Parpot, P., Torres, J. A., & Chagas, P. M. B. (2012). Decolorization of the phthalocyanine dye reactive blue 21 by turnip peroxidase and assessment of its oxidation products. Journal of Molecular Catalysis B: Enzymatic, 77, 9–14. https://doi.org/10.1016/j.molcatb.2011.12.006 DOI: https://doi.org/10.1016/j.molcatb.2011.12.006
  77. Silva, M. C., Torres, J. A., Vasconcelos de Sá, L. R. V., Chagas, P. M. B., Ferreira-Leitão, V. S., & Corrêa, A. D. (2013). The use of soybean peroxidase in the decolourization of Remazol brilliant Blue R and toxicological evaluation of its degradation products. Journal of Molecular Catalysis B: Enzymatic, 89, 122–129. https://doi.org/10.1016/j.molcatb.2013.01.004 DOI: https://doi.org/10.1016/j.molcatb.2013.01.004
  78. Singh, A. D., Sabaratnam, V., Abdullah, N., Annuar, M. S. M., & Ramachandran, K. B. (2010). Decolourisation of chemically different dyes by enzymes from spent compost of Pleurotus sajor-caju and their kinetics. African Journal of Biotechnology, 9(1), 41-45.
  79. Sugano, Y., Matsushima, Y., Tsuchiya, K., Aoki, H., Hirai, M., & Shoda, M. (2009). Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris. Biodegradation, 20(3), 433–440. https://doi.org/10.1007/s10532-008-9234-y DOI: https://doi.org/10.1007/s10532-008-9234-y
  80. Šušla, M., Novotný, C., Erbanová, P., & Svobodová, K. (2008). Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase. Folia microbiologica, 53(6), 479–485. https://doi.org/10.1007/s12223-008-0075-1 DOI: https://doi.org/10.1007/s12223-008-0075-1
  81. A. A., Joshi, S. M., Jadhav, S. U., Tamboli, D. P., & Govindwar, S. P. (2010). Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation, 21(2), 283–296. https://doi.org/10.1007/s10532-009-9300-0 DOI: https://doi.org/10.1007/s10532-009-9300-0
  82. Telke, A. A., Kadam, A. A., & Govindwar, S. P. (2015). Bacterial enzymes and their role in decolorization of azo dyes. In. Environmental Science and Engineering. Springer, (149–168). https://doi.org/10.1007/978-3-319-10942-8_7 DOI: https://doi.org/10.1007/978-3-319-10942-8_7
  83. Tian, J. H., Pourcher, A. M., Klingelschmitt, F., Le Roux, S., & Peu, P. (2016). Class P dye-decolorizing peroxidase gene: Degenerated primers design and phylogenetic analysis. Journal of Microbiological Methods, 130, 148–153. https://doi.org/10.1016/j.mimet.2016.09.016 DOI: https://doi.org/10.1016/j.mimet.2016.09.016
  84. Verma, R. K., Sankhla, M. S., Rathod, N. V., Sonone, S. S., Parihar, K., & Singh, G. K. (2021). Eradication of fatal textile industrial dyes by wastewater treatment. Biointerface Research in Applied Chemistry. 12(1), 567-587. https://doi.org/10.33263/BRIAC121.567587 DOI: https://doi.org/10.33263/BRIAC121.567587
  85. Yao, J., Jia, R., Zheng, L., & Wang, B. (2013). Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnology and Bioprocess Engineering, 18(5), 868–877. https://doi.org/10.1007/s12257-013-0357-6 DOI: https://doi.org/10.1007/s12257-013-0357-6
  86. Zhang, J., Feng, M., Jiang, Y., Hu, M., Li, S., & Zhai, Q. (2012). Efficient decolorization/degradation of aqueous azo dyes using buffered H2O2 oxidation catalyzed by a dosage below ppm level of chloroperoxidase. Chemical Engineering Journal, 191, 236–242. https://doi.org/10.1016/j.cej.2012.03.009 DOI: https://doi.org/10.1016/j.cej.2012.03.009
  87. Zhao, X., & Hardin, I. R. (2007). HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes and Pigments, 73(3), 322–325. https://doi.org/10.1016/j.dyepig.2005.11.014 DOI: https://doi.org/10.1016/j.dyepig.2005.11.014
  88. Zucca, P., Rescigno, A., Pintus, M., Rinaldi, A. C., & Sanjust, E. (2012). Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions. Chemistry Central Journal, 6(1), 161. https://doi.org/10.1186/1752-153X-6-161 DOI: https://doi.org/10.1186/1752-153X-6-161