Main Article Content


Nowadays the treatment of environmental pollutants such as synthetic dyes (used in multiple industries such as paper, textile, food, plastic and pharmaceutical) has received much attention, especially for biotechnological treatments using both native and artificial enzymes. In this context, many enzymes have been reported to efficiently perform dye degradation. Peroxidase is one such enzyme, which causes dye degradation either by precipitation of chemical structure of aromatic dyes or by opening up their aromatic ring structure. In the present study an extra-cellular peroxidase extracted from a bacterial strain Bacillus sp. F31 JX984444.1 was tested for its capability to decolorize 16 different dyes used in various industries. Out of 16 different textile dyes the Bacillus sp. peroxidase efficiently decolorized 5 dyes out of which 4 triphenyl methane dyes (Basic Fuchsin (BF), Rhodamine B (RB), Coomassie Brilliant Blue (CBBG) and Malachite Green (MG) showed decolorization up to 95.5%, 70.8%, 70% and 40%, respectively, while a polymeric heterocyclic dye Methylene Blue (MB) showed 66.2% decolorization. These 5 dyes were studied to further enhance their decolorization by peroxidase after purification by optimizing different reaction conditions (temperature, time, enzyme concentration, buffer pH, dye concentration and effect of various salt ions, H2O2 concentration). This study indicates that the extracellular peroxidase (purified) from Bacillus sp. can be used as a useful tool for the treatment (degradation/decolorization) of industrial effluents contaminated with harmful industrial dyes.


Degradation Haem Industrial effluent Oxidoreductase enzyme Pollutants

Article Details

How to Cite
K., N., & Kanwar , S. S. . (2022). Biodegradation of harmful industrial dyes by an extra-cellular bacterial peroxidase . Environment Conservation Journal, 23(3), 217–232.


  1. Alam, M., & Pathak, J. K. (2010). Rapid assessment of water quality index of Ramganga 318 River, Western Uttar Pradesh (India) using a computer programme. Nature and Science, 8(11), 1–8.
  2. Al-Tohamy, R., Kenawy, E. R., Sun, J., & Ali, S. S. (2021). Performance of a newly isolated salt-tolerant yeast strain Sterigmatomyces halophilus SSA-1575 for azo dye decolorization and detoxification. Frontiers in Microbiology, 11, 1163. DOI:
  3. Al-Tohamy, R., Sun, J., Fareed, M. F., Kenawy, E. R., & Ali, S. S. (2020). Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Scientific Reports, 10(1), 12370. DOI:
  4. Anjali, P., Poonam S., & Leela, I. (2007). Bacterial decolorization and degradation of azo dyes, International Biodeterioration and Biodegradation, 59, 73–84. DOI:
  5. Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2021). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 26(13), 3813. DOI:
  6. Arif, A., Malik, M. F., Liaqat, S., Aslam, A., Mumtaz, K., Mahmood, Ch., Nisa, K., Khurshid, F., Arif, F., & Zaib, Kh. M. S. (2020). Water pollution and industries. Pure and Applied Biology, 9(4), 2214. DOI:
  7. Bao, J., Xu, S., Zhao, L., Peng, G., & Lu, H. (2020). Colorimetric and fluorescent dual-mode strategy for sensitive detection of sulfide: Target-induced horseradish peroxidase deactivation. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 236(236), 118296. DOI:
  8. Barathi, S., Aruljothi, K. N., Karthik, C., & Padikasan, I. A.. (2020). Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue160 textile dye by Bacillus subtilis. Biotechnology Reports, 28, e00522. DOI:
  9. Blánquez, A., Rodríguez, J., Brissos, V., Mendes, S., Martins, L. O., Ball, A. S., Arias, M. E., & Hernández, M. (2019). Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi Journal of Biological Sciences, 26(5), 913–920. DOI:
  10. Boucherit, N., Abouseoud, M., & Adour, L. (2013). Degradation of direct azo dye by Cucurbita pepo free and immobilized peroxidase. Journal of Environmental Sciences (China), 25(6), 1235–1244. DOI:
  11. Bovaird, J. H., Ngo, T. T., & Lenhoff, H. M. (1982). Optimizing the o-phenylenediamine assay for horseradish peroxidase: Effects of phosphate and pH, substrate and enzyme concentrations, and stopping reagents. Clinical Chemistry, 28(12), 2423–2426. DOI:
  12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. DOI:
  13. Carmen, Z., & Daniela, S. (2012). Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents- A Critical Overview, organic pollutants, Ten years after the Stockholm convention - Environmental and Analytical Update, Dr. Tomasz Puzyn (Ed.), ISBN: 978-953-307-917-2, InTech, Available from: after-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes characteristics polluting-effects-and-separation-elimination-procedures-from-in, 3, 55-86. DOI:
  14. Celebi, M., Altikatoglu, M., Mustafaeva Akdeste, Z., & Yildirim, H. (2013). Determination of decolorization properties of Reactive Blue 19 dye using Horseradish Peroxidase enzyme. Turkish Journal of Biochemistry, 38(2), 200–206. DOI:
  15. Chang, Y., Yang, D., Li, R., Wang, T., & Zhu, Y. (2021). Textile dye biodecolorization by manganese peroxidase: A review. Molecules, 26(15), 4403. DOI:
  16. Chanwun, T., Muhamad, N., Chirapongsatonkul, N., & Churngchow, N. (2013). Hevea brasiliensis cell suspension peroxidase: Purification, characterization and application for dye decolorization. Applied Microbiology and Biotechnology Express, 3(1), 14. DOI:
  17. Chauhan, V., & Kanwar, S. S. (2020). Impact of industrial dyes on the environment and bacterial peroxidase isolated from Bacillus sp. BTS-P5 as a possible solution. Current Biotechnology, 9(1), 45–56. DOI:
  18. Chen, C., & Li, T. (2016). Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. Physical Sciences Reviews, 1(9). DOI:
  19. Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101(1), 57–68. DOI:
  20. Dawkar, V. V., Jadhav, U. U., Telke, A. A., & Govindwar, S. P. (2009). Peroxidase from Bacillus sp. VUS and its role in the decolorization of textile dyes. Biotechnology and Bioprocess Engineering, 14(3), 361–368. DOI:
  21. Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693,108590. DOI:
  22. Dhingra, O. D., & Sinclair, J. B. (1993). Basic Plant Pathology method, 1993 (pp. 179–180). CBS Publishers.
  23. Du, L. N., Wang, S., Li, G., Wang, B., Jia, X. M., Zhao, Y. H., & Chen, Y. L. (2011). Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: Characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology, 20(2), 438–446. DOI:
  24. Faraco, V., Piscitelli, A., Sannia, G., & Giardina, P. (2007). Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World Journal of Microbiology and Biotechnology, 23(6), 889–893. DOI:
  25. Fetyan, N. A., Ali, M. M., & Break, L. M. (2013). Biodegradation of a textile mono azo dye: Reactive violet 5 by a novel isolated bacterial strain. Life Science Journal, 10, 397–403.
  26. Franciscon, E., Grossman, M. J., Paschoal, J. A. R., Reyes, F. G. R., & Durrant, L. R. (2012). Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus, 1(1), 37. DOI:
  27. Fujihara, S., Hatashita, M., Sakurai, A., & Sakakibara, M. (2010). Production of manganese peroxidase by white rot fungi from potato-processing wastewater: Role of amino acids on biosynthesis. African Journal of Biotechnology, 9(5), 725-731 DOI:
  28. Gahlout, M., Gupte, S., & Gupte, A. (2013). Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. Journal of Biotechnology, 3(2), 143–152. DOI:
  29. Gholami-Borujeni, F., Mahvi, A. H., Nasseri, S., Faramarzi, M. A., Nabizadeh, R., & Alimohammadi, M. (2011). Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. Applied Biochemistry and Biotechnology, 165(5–6), 1274–1284. DOI:
  30. Gomare, S. S., Jadhav, J. P., & Govindwar, S. P. (2008). Degradation of sulfonated azo dyes by the purified lignin peroxidase from Brevibacillus laterosporus MTCC 2298. Biotechnology and Bioprocess Engineering, 13(2), 136–143. DOI:
  31. Guerra, E., Llompart, M., & Garcia-Jares, C. (2018). Analysis of dyes in cosmetics: Challenges and recent developments. Cosmetics, 5(3), 47. DOI:
  32. Guo, W. J., Xu, J. K., Wu, S. T., Gao, S. Q., Wen, G. B., Tan, X., & Lin, Y. W. (2021). Design and engineering of an efficient peroxidase using myoglobin for dye decolorization and lignin bioconversion. International Journal of Molecular Sciences, 23(1). DOI:
  33. Hong, Y., Dashtban, M., Chen, S., Song, R., & Qin, W. (2012). Enzyme production and lignin degradation by four basidiomycetous fungi in submerged fermentation of peat containing medium. International Journal of Biology, 4(1), 172. DOI:
  34. Hossain, S. M., & Anantharaman, N. (2006). Activity enhancement of ligninolytic enzymes of Trametes versicolor with bagasse powder. African Journal of Biotechnology, 5(2), 189–194.
  35. Huber, P., & Carré, B. (2012). Decolorization of process waters in deinking mills and similar applications: A review. BioResources, 7(1), 1366–1382.
  36. Husain, Q. (2010). Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review. Reviews in Environmental Science and Biotechnology, 9(2), 117–140. DOI:
  37. Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh Kumar, B. (2020). ‘Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. Journal of Cleaner Production, 272., PubMed: 122636 DOI:
  38. Ili? ?ur?i?, K., Ostafe, R., Prodanovi?, O., ?ur?evi? ?elmaš, A., Popovi?, N., Fischer, R., Schillberg, S., & Prodanovi?, R. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science and Engineering, 15(2), 1–10. DOI:
  39. Irshad, M., & Asgher, M. (2011). Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum commune IBL-06 in solid state medium banana stalks. African Journal of Biotechnology, 10(79), 18234–18242. DOI:
  40. Jenkins, J. M. X., Noble, C. E. M., Grayson, K. J., Mulholland, A. J., & Anderson, J. L. R. (2021). Substrate promiscuity of a de novo designed peroxidase. Journal of Inorganic Biochemistry, 217, 111370. DOI:
  41. Joshi, S. M., Inamdar, S. A., Telke, A. A., Tamboli, D. P., & Govindwar, S. P. (2010). Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. International Biodeterioration and Biodegradation, 64(7), 622–628. DOI:
  42. Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A., & Bhatti, H. N. (2012). Degradation and kinetics of H2O2 assisted photochemical oxidation of Remazol Turquoise Blue. Chemical Engineering Journal, 200–202, 373–379. DOI:
  43. Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A., & Bhatti, H. N. (2013). Mechanistic study of a diazo dye degradation by Soybean peroxidase. Chemistry Central Journal, 7(1), 93. DOI:
  44. Kinnunen, A., Maijala, P., Jarvinen, P., & Hatakka, A. (2017). Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Current Biotechnology, 6(2), 105–115. DOI:
  45. Krishnaveni, M., & Kowasalya R. (2011). Characterization and decolorization of dye and textile effluent by laccase from Pleurotus florida-a white-rot fungi. International Journal of Pharmacy and Biological Sciences, 2(1), 117-123.
  46. Kurade, M. B., Waghmode, T. R., & Govindwar, S. P. (2011). Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosporus. Journal of Hazardous Materials, 192(3), 1746–1755. DOI:
  47. Lauber, C., Schwarz, T., Nguyen, Q. K., Lorenz, P., Lochnit, G., & Zorn, H. (2017). Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus. AMB Express, 7(1), 164. DOI:
  48. Ledakowicz, S., & Pa?dzior, K. (2021). Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules, 26(4), 870. DOI:
  49. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. DOI:
  50. Liers, C., Bobeth, C., Pecyna, M., Ullrich, R., & Hofrichter, M. (2010). DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Applied Microbiology and Biotechnology, 85(6), 1869–1879. DOI:
  51. Loprasert, S., Negoro, S., & Okada, H. (1988). Thermostable peroxidase from Bacillus stearothermophilus. Journal of General Microbiology, 134(7), 1971–1976. DOI:
  52. Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327. DOI:
  53. Marco-Urrea, E., & Reddy, C. A. (2012). Degradation of chloro-organic pollutants by white rot fungi. In. Environmental Science and Engineering. Springer, (31–66). DOI:
  54. Mathur, N., & Kumar, A. (2013). Decolorization of methyl red by an isolated Pseudomonas putida strain MR1. African Journal of Microbiology Research, 7(12), 983–989.
  55. Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere, 58(8), 1097–1105. DOI:
  56. Mohanty, S. S., & Kumar, A. (2021). Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. Scientific Reports, 11(1), 7678. DOI:
  57. Morsy, S. A. G. Z., Ahmad Tajudin, A., Ali, M., Mohamad, S., & Shariff, F. M. (2020). Current development in decolorization of synthetic dyes by immobilized laccases-mini review. Frontiers in microbiology, 11, 2350. doi: 10.3389/fmicb.2020.572309 DOI:
  58. Ogubue C. J., & Sawidis, T. (2012). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophilia isolated from industrial effulent. Biotechnology Research International, PubMed: 967925. DOI:
  59. Ong, S. T., Keng, P. S., Lee, W. N., Ha, S. T., & Hung, Y. T. (2011). Dye waste treatment. Water, 3(1), 157–176. DOI:
  60. Pal, S., & Vimala, Y. (2012). Bioremediation and decolorization of distillery effluent by novel microbial consortium. European Journal of Experimental Biology, 2(3), 496–504.
  61. Pandey, V. P., Bhagat, P. K., Prajapati, R., Jaiswal, N., Singh, S., Awasthi, M., & Dwivedi, U. N. (2016). A defense associated peroxidase from lemon having dye decolorizing ability and offering resistance to heat, heavy metals and organic solvents. Journal of Biochemistry & Analytical Biochemistry, 5(291), 2161-1009. DOI:
  62. Pereira, A. R., Sedenho, G. C., Souza, J. C. P., & Crespilho, F. N. (2018). Advances in enzyme bioelectrochemistry. Anais da Academia Brasileira de Ciências, 90(1) Suppl. 1, 825–857. DOI:
  63. Qin, X., Luo, H., Zhang, X., Yao, B., Ma, F., & Su, X. (2018). Dye-decolorizing peroxidases in Irpex lacteus combining the catalytic properties of heme peroxidases and laccase play important roles in ligninolytic system. Biotechnology for Biofuels, 11(1), 302. DOI:
  64. Ramachandran, P., Sundharam, R., Palaniyappan, J., & Munusamy, A. P. (2013). Potential process implicated in bioremediation of textile effluents: A review. Advances in Applied Science Research, 4(1), 131–145.
  65. Renugadevi, R., Ayyappadas, M. P., Preethy, P. H., & Savetha, S. (2011). Isolation, screening and induction of mutation in strain for extra cellular lignin peroxidase producing bacteria from soil and its partial purification. Journal of Research in Biology, 4, 312–318.
  66. Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays in Biochemistry, 59, 1–41. DOI:
  67. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative [Review]. Bioresource Technology, 77(3), 247–255. DOI:
  68. Roushdy, M. M., Abdel-Shakour, E. H., & El-Agamy, E. I. (2011). Biotechnological approach for lignin peroxidase (lip) production from agricultural wastes (rice husk) by Cunninghamella elegans. Journal of American Science, 7, 6–13.
  69. Saladino, R., Guazzaroni, M., Crestini, C., & Crucianelli, M. (2013). Dye degradation by layer?by?layer immobilised peroxidase/redox mediator systems. ChemCatChem, 5(6), 1407–1415. DOI:
  70. Salvachúa, D., Prieto, A., Mattinen, M. L., Tamminen, T., Liitiä, T., Lille, M., Willför, S., Martínez, A. T., Martínez, M. J., & Faulds, C. B. (2013). Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking. Enzyme and Microbial Technology, 52(6–7), 303–311. DOI:
  71. Satapathy, P. K., Randhawa, N. S., & Das, N. N. (2012). Oxidative decolorization of methylene blue by leached sea-nodule residues generated by the reduction-roasting ammoniacal leaching process. Environmental Technology, 33(4–6), 515–522. DOI:
  72. Šekuljica, N. Ž, Prlainovi?, N. Ž, Stefanovi?, A. B., Žuža, M. G., ?i?kari?, D. Z., Mijin, D. Ž, & Kneževi?-Jugovi?, Z. D. (2020). Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study. The Scientific World Journal, 2015, 371625. DOI:
  73. Shah, M. P. (2013). Microbial degradation of textile dye (Remazol Black B) by Bacillus sp. ELT. Journal of Applied and Environmental Microbiology, 1, 6–11.
  74. Shin, K., Oh, I., & Kim, C. (1998). Production and purification of Remazol brilliant blue R decolourizing peroxidase from the culture filtrate of Pleurotus ostreatus. Journal of Applied and Environmental Microbiology, 63, 1744–1748. DOI:
  75. Si, J., & Cui, B. K. (2013). A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. Journal of Molecular Catalysis B: Enzymatic, 89, 6–14. DOI:
  76. Silva, M. C., Corrêa, A. D., Amorim, M. T. S. P., Parpot, P., Torres, J. A., & Chagas, P. M. B. (2012). Decolorization of the phthalocyanine dye reactive blue 21 by turnip peroxidase and assessment of its oxidation products. Journal of Molecular Catalysis B: Enzymatic, 77, 9–14. DOI:
  77. Silva, M. C., Torres, J. A., Vasconcelos de Sá, L. R. V., Chagas, P. M. B., Ferreira-Leitão, V. S., & Corrêa, A. D. (2013). The use of soybean peroxidase in the decolourization of Remazol brilliant Blue R and toxicological evaluation of its degradation products. Journal of Molecular Catalysis B: Enzymatic, 89, 122–129. DOI:
  78. Singh, A. D., Sabaratnam, V., Abdullah, N., Annuar, M. S. M., & Ramachandran, K. B. (2010). Decolourisation of chemically different dyes by enzymes from spent compost of Pleurotus sajor-caju and their kinetics. African Journal of Biotechnology, 9(1), 41-45.
  79. Sugano, Y., Matsushima, Y., Tsuchiya, K., Aoki, H., Hirai, M., & Shoda, M. (2009). Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris. Biodegradation, 20(3), 433–440. DOI:
  80. Šušla, M., Novotný, C., Erbanová, P., & Svobodová, K. (2008). Implication of Dichomitus squalens manganese-dependent peroxidase in dye decolorization and cooperation of the enzyme with laccase. Folia microbiologica, 53(6), 479–485. DOI:
  81. A. A., Joshi, S. M., Jadhav, S. U., Tamboli, D. P., & Govindwar, S. P. (2010). Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation, 21(2), 283–296. DOI:
  82. Telke, A. A., Kadam, A. A., & Govindwar, S. P. (2015). Bacterial enzymes and their role in decolorization of azo dyes. In. Environmental Science and Engineering. Springer, (149–168). DOI:
  83. Tian, J. H., Pourcher, A. M., Klingelschmitt, F., Le Roux, S., & Peu, P. (2016). Class P dye-decolorizing peroxidase gene: Degenerated primers design and phylogenetic analysis. Journal of Microbiological Methods, 130, 148–153. DOI:
  84. Verma, R. K., Sankhla, M. S., Rathod, N. V., Sonone, S. S., Parihar, K., & Singh, G. K. (2021). Eradication of fatal textile industrial dyes by wastewater treatment. Biointerface Research in Applied Chemistry. 12(1), 567-587. DOI:
  85. Yao, J., Jia, R., Zheng, L., & Wang, B. (2013). Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnology and Bioprocess Engineering, 18(5), 868–877. DOI:
  86. Zhang, J., Feng, M., Jiang, Y., Hu, M., Li, S., & Zhai, Q. (2012). Efficient decolorization/degradation of aqueous azo dyes using buffered H2O2 oxidation catalyzed by a dosage below ppm level of chloroperoxidase. Chemical Engineering Journal, 191, 236–242. DOI:
  87. Zhao, X., & Hardin, I. R. (2007). HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes and Pigments, 73(3), 322–325. DOI:
  88. Zucca, P., Rescigno, A., Pintus, M., Rinaldi, A. C., & Sanjust, E. (2012). Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions. Chemistry Central Journal, 6(1), 161. DOI: