Main Article Content


Thirteen lines and three testers were used to produce 39 single cross maize hybrids by line Ítester mating design. The genetic divergence among thirteen lines and three tester of maize were estimated by using Mahalanobis D2 statistic for twelve characters. The genotypes were grouped into five clusters. Cluster I comprised 12 parental genotypes (L1, L2, L3, L4, L5; L6, L7, L8, L9, L11; L12, L13), while Cluster II (T3), III (T1), IV (L10) and V (T2) were mono-genotypic, suggesting more variability in genetic makeup of the genotypes included in these clusters. The correlation coefficients and linear regressions were used to know the effects of parental genetic distance in determining heterosis and per se performance of the hybrids. Parental genetic distance exhibited significant negative association and significant linear regression along with very low coefficient of determination with better parent heterosis (BPH) and non-significant with per se performance of the hybrids. The present investigation, therefore, the parental genetic distance has significant role in determining heterosis and hybrid performance in kharif maize.


Genetic diversity, Kharif maize, Mahalanobis D2, Genetic distance

Article Details

How to Cite
Krishna, B. ., Singh, B. ., Mandal, S. S., Kumari, . R., & Ranjan, T. . (2021). Heterosis in relation to genetic divergence in short duration maize (Zea mays L.). Environment Conservation Journal, 22(3), 137–142.


  1. Alam, M.S. & Alam, M.F.( 2013). Genetic divergence study of maize inbred lines (Zea mays L.). International Journal of Sustainable Agricultural Technology, 5(3), 28-31.
  2. Balestre, M., Von Pinho, R. G., Souza, J. C., & Lima, J. L. (2008). Comparison of maize similarity and dissimilarity genetic coefficients based on microsatellite markers. Genet. Mol. Res, 7(3), 695-705. DOI:
  3. Betrán, F. J., Ribaut, J. M., Beck, D., & De León, D. G. (2003). Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Science, 43(3), 797-806. DOI:
  4. Bhoite, K. D., & Dumbre, A. D. (2007). Studies on genetic diversity in forage maize (Zea mays L.). Journal of Maharashtra Agricultural Universities, 32(2), 290-291.
  5. Bhadru, D., Swarnalatha, V., Mallaiah, B., Sreelatha, D., Kumar, M. N., & Reddy, M. L. (2020). Study of genetic variability and diversity in maize (Zea mays L.) inbred lines. Current Journal of Applied Science and Technology, 39(38), 31-39. DOI:
  6. Devi, P., & Singh, N. K. (2011). Heterosis, molecular diversity, combining ability and their interrelationships in short duration maize (Zea mays L.) across the environments. Euphytica, 178(1), 71-81. DOI:
  7. Dhliwayo, T., Pixley, K., Menkir, A., & Warburton, M. (2009). Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop science, 49(4), 1201-1210. DOI:
  8. Farzana, Jabeen, Sahib, K.H. and Satyanarayana, E. (2007). Divergence studies in quality protein maize (Zea mays L.) genotypes. Research on Crops, 8(3):609-611.
  9. Kempthorne, O. (1957). An introduction to genetic statistics.
  10. Marker, S., & Krupakar, A. (2009). Genetic divergence in exotic maize germplasm (Zea mays L.). Journal of Agricultural and Biological Science, 4(4), 44-47.
  11. Mahalanobis, P. C., (1928). On the generalized distance in statistics. Proc. Natl. Acad. Sci., 2: 55-79.
  12. Matin, M. Q. I., Rasul, M. G., Islam, A. A., Mian, M. K., Ivy, N. A., & Ahmed, J. U. (2017). Study of genetic diversity in maize (Zea mays L.) Inbreds. Plant, 5(2), 31-35. DOI:
  13. More, A. J., Bhoite, K. D., & Pardeshi, S. R. (2006). Genetic diversity studies in forage maize (Zea mays L.). Research on Crops, 7(3), 728.
  14. Prasad, S. K., & Singh, T. P. (1986). Heterosis in relation to genetic divergence in maize (Zea mays L.). Euphytica, 35(3), 919-924. DOI:
  15. Rao, C. R. (1952). Advanced statistical methods in biometric research.
  16. Saxena, V. K., Mathi, N. S., Singh, N. N., & Vasal, S. K. (1998). Heterosis in maize: Grouping and patterns. In Proc. 7th Asian Regional Maize Workshop. Los Banos, Philippines (Vol. 23, No. 27, pp. 124-133).
  17. Sinha, N., Singh, D., & Mohanty, T. A. (2020). Study of genetic divergence in lowland rice genotypes of Bihar. Int. J. Curr. Microbiol. App. Sci, 9(2), 88-94. DOI:
  18. Singh, D., Kumar, A., Kumar, R., Kushwaha, N., Mohanty, T. A., & Kumari, P. (2020). Genetic variability analysis of QPM (Zea mays L.) inbreds using morphological characters. International Journal Current Microbiology Applied Science, 9(2), 328-338.
  19. Singh, P., Sain, D., Dwivedi, V.K., Kumar, Y. & Sangwan, O. (2005). Genetic divergence studies in maize (Zea mays L.). Annals of Agri Bio Research, 10(1),43-46.
  20. Singh, P.K. & Chaudhari, L.B. (2001). Genetic divergence in maize (Zea mays L.). Journal of Research-Birsa Agricultural University, 13(2),193-196.
  21. Singh, D., Kumar, A., Kumar, R., Kushwaha, N., Mohanty, T. and Kumari, P. (2019).Genetic diversity analysis of QPM (Zea mays L.) inbreds using morphological characters. Journal of Pharmacognosy and Phytochemistry, 9(1):1205- 1210. DOI:
  22. Srdi?, J., Mladenovi?-Drini?, S., Paji?, Z., & Filipovi?, M. (2007). Characterization of maize inbred lines based on molecular markers, heterosis and pedigree data. Genetika, 39(3), 355-363. DOI:
  23. Suman, S. K., Kumar, M., Kumar, R., Kumar, A., Singh, D., & Kumar, A. (2020). Assessment of genetic diversity in inbred lines of maize (Zea mays L.) and its relationship with heterosis. IJCS, 8(4), 2917-2920. DOI:
  24. Vasal, S.K. (1998). Hybrid maize technology: Challenges and expanding possibilities for research in the next century. Proc. of 7th Asian Regional Maize Workshop. Los Banos, Philippines, 23(27), 58-62.