Main Article Content

Abstract

In the present study, the removal of m- cresol in an aqueous medium was studied by the photoelectrocatalytic (PEC) degradation by the TiO2 suspension on dip-coated stainless steel electrode under UV lamp of the wavelength of 352nm. The performance of the PEC method on the degradation of m- cresol was studied by made the comparison with the photocatalytic oxidation (PCO) method in terms of COD removal and kinetic study. In the PEC study on the degradation of m- cresol pollutant was studied by the various parameters such as initial concentration, pH, and the bias potential. The result found that the optimum degradation efficiency of m- cresol in the PEC and PCO methods were 79.6% and 39.8% at pH 5.0. The result showed that the kinetic constants (k) in the PEC and PCO methods were -0.0116 and -0.0058 under optimum conditions. The result found that the PEC method using TiO2 coated on stainless steel electrode is two times higher than the PCO method on the degradation of m- cresol.

Keywords

Dip-coated stainless steel electrode m –cresol pollutant Photocatalytic efficiency Photoelectrocatalytic oxidation

Article Details

How to Cite
Jayapal, J., & Thenmozhi, M. (2021). UV photoelectrocatalytic degradation of m- cresol pollutant using TiO2 dip -coated stainless steel electrode system . Environment Conservation Journal, 22(3), 123–131. https://doi.org/10.36953/ECJ.2021.22315

References

  1. Chewi, H.C., Cheng Y .W., & Shin Juang, (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 139(2), 322-329. DOI: https://doi.org/10.1016/j.cej.2007.08.002
  2. Cristina, F., Pere-Llu?´s, C., Francesc, C., Jose, A.G., Rosa, M.R., Conchita, A., and Enric. (2007). Solar photoelectro-Fenton degradation of cresols using a flow reactor with aboron-doped diamond anode. Applied Catalysis B: Environmental, 75, 17-28. DOI: https://doi.org/10.1016/j.apcatb.2007.03.010
  3. Ebrahim, Z., (2018). Electrochemically assisted photocatalytic removal of m?cresol using TiO2 thin film?modified carbon sheet photoelectrode. International Journal of Industrial Chemistry 9, 285–294. DOI: https://doi.org/10.1007/s40090-018-0158-z
  4. Fabiana, M., Paschoal, M., Marc, A., & Maria, V.B, (2009). The photoelectrocatalytic oxidative treatment of textile wastewater containing disperses dyes. Desalination, 249 (3), 1350-1355. DOI: https://doi.org/10.1016/j.desal.2009.06.024
  5. Fang, B.L., Xiang, Z.Li., Yue, H.K., & Xin, J.L, (2002). An innovative Ti/TiO2 mesh Photoelectrode for methyl orange Photoelectrocatalytic degradation. Journal of Environmental Science and Health, 37(4), 623–640. DOI: https://doi.org/10.1081/ESE-120003242
  6. Feng, H.E., & Cheng, L.E.I. (2004). Degradation kinetics and mechanism of phenol in photo – Fenton process. Journal of Zhejiang University Science, 5, 198-205. DOI: https://doi.org/10.1631/jzus.2004.0198
  7. Fransico J, R., Javier, B., & Cristina, R. (2007). Elimination of benzene and chlorobenzene by photodegrdation and ozonation process. Chemical Engineering communications, 194(6), 811-827. DOI: https://doi.org/10.1080/00986440701193837
  8. Gaya U.I., & Abdullah A.H, (2008). Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1-12. https://www.researchgate.net/publication/222937056 DOI: https://doi.org/10.1016/j.jphotochemrev.2007.12.003
  9. Guiying, L., Taicheng, A., Jiaxin, C., Guoying, S., Jiamo, F., Fanzhong, C., Shanqing, Z., & Huijun, Zh, (2006). Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions. Journal of Hazardous Materials, B138, 392–400. DOI: https://doi.org/10.1016/j.jhazmat.2006.05.083
  10. Huseyin, S., Jeosadaque, J. S., & Marc, A.A, (2003). Photoelectrocatalytic humic acid degradation kinetics and effect of pH, applied potential and inorganic ions. Journal of Chemical Technology and Biotechnology, 78,979–984. DOI: https://doi.org/10.1002/jctb.895
  11. Kavitha, V., & Palanivelu K. (2003). Degradation of 2- chlorophenol by Fenton and Photo- Fenton process – a comparative study. Journal of Environmental science and health, Part A, 38, 1215 – 1231. DOI: https://doi.org/10.1081/ESE-120021121
  12. Li, J., Zheng, L., Li, L., Xian, Y., & Jin, L, (2007). Fabrication of TiO2/Ti electrode by laser assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. Journal of Hazard Materials. 139, 72–78. DOI: https://doi.org/10.1016/j.jhazmat.2006.06.003
  13. Li, X.Z., Liu, H.L., Li, F.B., & Mak, C.L, (2007). Photoelectrocatalytic Oxidation of Rhodamine B in aqueous solution using Ti/TiO2 mesh Photoelectrodes. Journal of Environmental Science and Health, Part A, 37, 55 - 69. DOI: https://doi.org/10.1081/ESE-100108482
  14. Michael, R.H., Scot, T.M., Wonyong, C., & Detlef, W.B, (1995). Environmental Applications of Semiconductor Photocatalysis. Journal of chemical Reviews, 95, 69-96. DOI: https://doi.org/10.1021/cr00033a004
  15. Quan, X., Ruan, X., Zhao, H., Chen, S., & Zhao, Y, (2007). Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environmental Pollution 147, 409–414. DOI: https://doi.org/10.1016/j.envpol.2006.05.023
  16. Rajkumar,D., Guk, K.J., & Palanivelu, K. (2005). Indirect Electrochemical Oxidation of Phenol in the Presence of Chloride for Wastewater treatment. Chemical Engineering and technology, 28, 98-105. DOI: https://doi.org/10.1002/ceat.200407002
  17. Rita, T., Nick, S., Claudio, M., & Ezio, P. (1991). Photocatalyzed mineralization of cresols in aqueous media with irradiated titania. Journal of Catalysis, 128, 352-365. DOI: https://doi.org/10.1016/0021-9517(91)90294-E
  18. Roberto, J.C., Walter, A.Z., & Marc, A. A, (2000). Effects of pH and Applied Potential on Photocurrent and Oxidation Rate of Saline Solutions of Formic Acid in a Photoelectrocatalytic Reactor. Environmental Science and Technology, 34(16), 3443-3451. DOI: https://doi.org/10.1021/es991024c
  19. Sayekti, W., Candra, P., Teguh, E.S., & Edi, P, (2014). Photoelectrocatalytic Rhodamine B in using Ti/ TiO2 Photoanode. Journal of Environmental Protection, 05(17), 1630-1640. DOI: https://doi.org/10.4236/jep.2014.517154
  20. Shinde., P.S, Patil, P.N., Bhosale, A., Bruger, G.N., Neumann, S.M., & Bhosale, C.H, (2009). UVA and solar light assisted photo electrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films. Applied Catalysis B: Environmental, 89, 288–294. DOI: https://doi.org/10.1016/j.apcatb.2009.02.025
  21. Sudipta, D., & Somnath, M. (2012). Kinetic modelling for removal of m-cresol from wastewater using mixed microbial culture in batch reactor. Journal of Water Reuse and Desalination, 3, 149-156. DOI: https://doi.org/10.2166/wrd.2012.055
  22. Taicheng, A., Wenbing, Z., Xianming, X., Guoying, S., Jiamo, F.,and Xihai, Z, (2004). Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor. Journal of Photochemistry and Photobiology A: Chemistry, 161(2-3), 233–242. DOI: https://doi.org/10.1016/j.nainr.2003.08.004
  23. Vinodgopal, K., Hotchandani, S., & Kama P.V, (1993). Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol, Journal of Physical Chemistry A, 97, 9040–9044. DOI: https://doi.org/10.1021/j100137a033
  24. Waldner, G., Bruger, A., Gaikwad, N. S., & Neumann, S.M, (2007). WO3 thin films for photoelectrochemical purification of water. Chemosphere, 67, 779-784. DOI: https://doi.org/10.1016/j.chemosphere.2006.10.024
  25. Waldner, G.R.G., & Michalle, N.S, (2007). Using photoelectrochemical measurements for distinguishing between direct and indirect hole transfer processes on anatase: Case of oxalic acid. Electrochimica Acta, 52, 2634–2639. DOI: https://doi.org/10.1016/j.electacta.2006.09.019
  26. Wang, N., Li, X., Wang, Y., Quan, X., & Chen, G, (2009a). Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chemical Engineering Journal, 146, 30–35. DOI: https://doi.org/10.1016/j.cej.2008.05.025
  27. Wataru, M., Masahiro, T., Hussein, T Z., & Yoshinori, K. (2006). Photodegradation of o- cresol in water by the H2O2/UV process. Journal of Environmental science and health, Part A; Toxic/Hazardous Substances & Environmental Engineering, 41, 1543 – 1558. DOI: https://doi.org/10.1080/10934520600754722
  28. Wenjie, Z., Yang, Y., & Xiaoxi, W, (2010). Photoelectrocatalytic degradation of methyl orange in TiO2 suspension-Ti electrode system. IEEE, 2, 978-982.
  29. Xiao, Z., Yongxin, Z., Juan, Z., & Shaoqi, Z, (2015). Degradation Kinetics of Photoelectrocatalysis on Landfill Leachate Using Codoped TiO2/Ti Photoelectrodes. Journal of Nanomaterials, 1-11. DOI: https://doi.org/10.1155/2015/810579
  30. Yan, X., Shi, H., & Wang, D, (2003). Photoelectrocatalytic degradation of phenol using a TiO2/Ni thin-film electrode. Korean Journal of Chemical Engineering. 20, 679–684. DOI: https://doi.org/10.1007/BF02706907
  31. Yang, H., & Pan, C, (2010). Synthesis of carbon-modified TiO2 nanotube arrays for enhancing the photocatalytic activity under the visible light. Journal of Alloys and Compound, 501, L8–L11. DOI: https://doi.org/10.1016/j.jallcom.2010.04.059
  32. Yang, Y., Zhang, H., & Yan, Y. (2018). The preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol. Royal Society open science, 5(3), 171731 DOI: https://doi.org/10.1098/rsos.171731
  33. Yanzong, Z., Xiaoyan, X., Yue, H., Xiaohong, Z., Fei, S., Shihuai, D., Hong, X., Xinyao, Y., Gang, Y., & Hong, P, (2012). Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes. An overview Chemosphere, 88, 145–154. DOI: https://doi.org/10.1016/j.chemosphere.2012.03.020
  34. Zhou, M., & Ma, X, (2009). Efficient photoelectrocatalytic activity of TiO2/Ti anode fabricated by metalorganic chemical vapor deposition (MOCVD). Electrochemical Communications. 11, 921–924. DOI: https://doi.org/10.1016/j.elecom.2009.02.029