Main Article Content
Abstract
Use of biological control for the management of diseases has gained huge awareness and importance in the present situation of climate change and food residues. Biocontrol agents play interesting role in developing plant health and provide protection against biotic and abiotic stresses. In this study, we isolated Trichoderma and Bacillus sp. isolated from soil samples collected from rice fields in Kharif 2019. Profiling based on the pH of the soil, the fungal bioagents were more present in slightly acidic to neutral pH (5.8-7.2) whereas bacterial bioagents in slightly neutral to basic (7.4-8.3). The isolates were screened for their ability to produce phytohormones, cell-wall degrading enzyme and biofilm. Based on biochemical screening two Trichoderma isolates (T6 and T7) and two Bacillus isolates (B1and B5) were subjected to glasshouse studies. Per cent diseased leaf area and lesion length of plants treated with B1 were found to be effective against pathogen. However, the plant growth promotion was more enhanced by T6. Scanning electron microscopy and molecular characterisation along with their phylogenetic analysis proved the identity of isolate B1 as Bacillus subtilis and T6 as Trichoderma atroviride.
Keywords
Article Details
Copyright (c) 2021 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127-36. DOI: https://doi.org/10.1007/s13205-013-0134-4
- Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2),71-9. DOI: https://doi.org/10.1016/j.jpha.2015.11.005
- Bozzola, J.J., & Russell, L.D. (1999). Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning.
- Brick, J.M., Bostock, R.M., & Silverstone, S.E. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbial, 57, 535-538. DOI: https://doi.org/10.1128/aem.57.2.535-538.1991
- Brunner, K., Zeilinger, S., Ciliento, R., Woo, S.L., Lorito, M., Kubicek, C.P., & Mach, R.L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and environmental microbiology, 71(7), 3959-65. DOI: https://doi.org/10.1128/AEM.71.7.3959-3965.2005
- Chinnaswami, K., Mishra, D., Miriyala, A., Vellaichamy, P., Kurubar, B., Gompa, J., Madamsetty, S.P and Raman, M.S. (2021) Native isolates of Trichoderma as bio-suppressants against sheath blight and stem rot pathogens of rice. Egypt Journal Biological Pest Control, 31(1):1-10. DOI: https://doi.org/10.1186/s41938-020-00356-4
- Choudhary, D.K., Prakash, A., and Johri, B.N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47(4), 289-97. DOI: https://doi.org/10.1007/s12088-007-0054-2
- Coninck, E., Scauflaire, J., Gollier, M., Liénard, C., Foucart, G., Manssens, G., Munaut, F., & Legrève, A. (2020). Trichoderma atroviride as a promising biocontrol agent in seed coating for reducing Fusarium damping?off on maize. Journal of applied microbiology, 129(3), 637-51. DOI: https://doi.org/10.1111/jam.14641
- Doni, F., Isahak, A., Zain, C.R., &Yusoff, W.M. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. Amb Express, 4(1), 1-7. DOI: https://doi.org/10.1186/s13568-014-0045-8
- Gangwar, G.P. & Sinha, A.P. (2010). Comparative antagonistic potential of Trichoderma spp. against Xanthomonas oryzae pv. oryzae. Annals of Plant Protection Sciences, 18(2), 458-463.
- Gravel, V. Antoun, H. & Tweddell, R.J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem, 39, 1968–1977. DOI: https://doi.org/10.1016/j.soilbio.2007.02.015
- Gupta, V.G., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., & Tuohy, M. (2014). Biotechnology and biology of Trichoderma. Newnes.
- Hastuti, R.D., Lestari, Y., Suwanto, A., & Saraswati, R. (2012). Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI Journal of Biosciences, 19(4), 155-62. DOI: https://doi.org/10.4308/hjb.19.4.155
- Istock, Conrad, A. (2008). "Bacillus: Cellular and Molecular Biology." 117-117.
- Kumar, S., & Singh, A. (2015). Biopesticides: present status and the future prospects. J Fertil Pestic, 6(2), 100-29. DOI: https://doi.org/10.4172/2471-2728.1000e129
- Lahlali, R., Peng, G., Gossen, B.D., McGregor, L., Yu, F.Q., Hynes, R.K., Hwang, S.F., McDonald, M.R., & Boyetchko, S.M. (2013). Evidence that the biofungicide Serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology, 103(3), 245-54. DOI: https://doi.org/10.1094/PHYTO-06-12-0123-R
- Lieckfeldt, E., Samuels, G.J., Nirenberg, H.I., & Petrini, O. (1999). A morphological and molecular perspective of Trichoderma viride: is it one or two species?. Applied and Environmental Microbiology, 65(6), 2418-28. DOI: https://doi.org/10.1128/AEM.65.6.2418-2428.1999
- Mahesh, C., Malavath, R.N., Balaguruvaiah, D., & Vidyasagar, G.E. (2018). Genesis, classification and evaluation of some sugarcane growing black soils in semi-arid tropical region of Telangana. Journal of Pharmacognosy and Phytochemistry, 7(3):81-92.
- Marin, V.R., Ferrarezi, J.H., Vieira, G., & Sass, D.C. (2019). Recent advances in the biocontrol of Xanthomonas spp. World Journal of Microbiology and Biotechnology, 35(5), 1-1. DOI: https://doi.org/10.1007/s11274-019-2646-5
- Miller, G.L. (1959). Use of dinitro salicylic acid reagent for determination of reducing sugar. Anal. Biochem, 31, 426–428. DOI: https://doi.org/10.1021/ac60147a030
- Mukherjee, P.K., Horwitz, B.A., Singh, U.S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. Trichoderma biology and applications. Boston: CAB International, 16, 1-9. DOI: https://doi.org/10.1079/9781780642475.0001
- Naziya, B., Murali, M., & Amruthesh, K.N. (2020). Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (Syd.) Butler & Bisby. Biomolecules, 10(1), 41. DOI: https://doi.org/10.3390/biom10010041
- Nautiyal, C.S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett, 170, 265-270. DOI: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- O’Brien, P.A. (2017). Biological control of plant diseases. Australasian Plant Pathology, 46(4), 293-304. DOI: https://doi.org/10.1007/s13313-017-0481-4
- Payne, S.M. (1994). Detection, isolation, and characterization of siderophores. Methods Enzymol. 235, 329–344. DOI: https://doi.org/10.1016/0076-6879(94)35151-1
- Pieterse, C.M, Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., & Bakker, P.A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52, 1-12. DOI: https://doi.org/10.1146/annurev-phyto-082712-102340
- Prakash, J., & Arora, N.K. (2019). Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech, 9(4):1-9. DOI: https://doi.org/10.1007/s13205-019-1660-5
- Ram, R.M., Keswani, C., Bisen, K., Tripathi, R., Singh, S.P., & Singh, H.B. (2018). Biocontrol technology: eco-friendly approaches for sustainable agriculture. InOmics technologies and bio-engineering (pp. 177-190). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-815870-8.00010-3
- Ramada, M.H., Lopes, F.Á., Ulhoa, C.J., & do Nascimento Silva, R. (2010). Optimized microplate ?-1, 3-glucanase assay system for Trichoderma spp. screening. Journal of Microbiological Methods, 81(1), 6-10. DOI: https://doi.org/10.1016/j.mimet.2010.01.010
- Reithner, B., Ibarra-Laclette, E., Mach, R.L., & Herrera-Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and environmental microbiology, 77(13), 4361-70. DOI: https://doi.org/10.1128/AEM.00129-11
- Saravanakumar, K., Arasu, V.S., & Kathiresan, K. (2013). Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat. Bot, 104, 101–105. DOI: https://doi.org/10.1016/j.aquabot.2012.09.001
- Scavino, A.F., & Pedraza, R.O. (2013). The role of siderophores in plant growth-promoting bacteria. In Bacteria in agrobiology: crop productivity (pp. 265-285). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-37241-4_11
- Schwyn, B., & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(2), 47-56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
- Singh, B.N., Dwivedi, P., Sarma, B.K., & Singh, H.B. (2019). Trichoderma asperellum T42 induces local defense against Xanthomonas oryzae pv. oryzae under nitrate and ammonium nutrients in tobacco. RSC Advances, 9(68), 39793-810. DOI: https://doi.org/10.1039/C9RA06802C
- Soltis, D.E., & Soltis, P.S. (2003). The role of phylogenetics in comparative genetics. Plant Physiology, 132(4), 1790-800. DOI: https://doi.org/10.1104/pp.103.022509
- Yousef, C.F., Travieso, M.L., Espinosa, U.M. (2008). Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol. Lett, 288, 118-12. DOI: https://doi.org/10.1111/j.1574-6968.2008.01339.x
References
Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127-36. DOI: https://doi.org/10.1007/s13205-013-0134-4
Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2),71-9. DOI: https://doi.org/10.1016/j.jpha.2015.11.005
Bozzola, J.J., & Russell, L.D. (1999). Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning.
Brick, J.M., Bostock, R.M., & Silverstone, S.E. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbial, 57, 535-538. DOI: https://doi.org/10.1128/aem.57.2.535-538.1991
Brunner, K., Zeilinger, S., Ciliento, R., Woo, S.L., Lorito, M., Kubicek, C.P., & Mach, R.L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and environmental microbiology, 71(7), 3959-65. DOI: https://doi.org/10.1128/AEM.71.7.3959-3965.2005
Chinnaswami, K., Mishra, D., Miriyala, A., Vellaichamy, P., Kurubar, B., Gompa, J., Madamsetty, S.P and Raman, M.S. (2021) Native isolates of Trichoderma as bio-suppressants against sheath blight and stem rot pathogens of rice. Egypt Journal Biological Pest Control, 31(1):1-10. DOI: https://doi.org/10.1186/s41938-020-00356-4
Choudhary, D.K., Prakash, A., and Johri, B.N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47(4), 289-97. DOI: https://doi.org/10.1007/s12088-007-0054-2
Coninck, E., Scauflaire, J., Gollier, M., Liénard, C., Foucart, G., Manssens, G., Munaut, F., & Legrève, A. (2020). Trichoderma atroviride as a promising biocontrol agent in seed coating for reducing Fusarium damping?off on maize. Journal of applied microbiology, 129(3), 637-51. DOI: https://doi.org/10.1111/jam.14641
Doni, F., Isahak, A., Zain, C.R., &Yusoff, W.M. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. Amb Express, 4(1), 1-7. DOI: https://doi.org/10.1186/s13568-014-0045-8
Gangwar, G.P. & Sinha, A.P. (2010). Comparative antagonistic potential of Trichoderma spp. against Xanthomonas oryzae pv. oryzae. Annals of Plant Protection Sciences, 18(2), 458-463.
Gravel, V. Antoun, H. & Tweddell, R.J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem, 39, 1968–1977. DOI: https://doi.org/10.1016/j.soilbio.2007.02.015
Gupta, V.G., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., & Tuohy, M. (2014). Biotechnology and biology of Trichoderma. Newnes.
Hastuti, R.D., Lestari, Y., Suwanto, A., & Saraswati, R. (2012). Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI Journal of Biosciences, 19(4), 155-62. DOI: https://doi.org/10.4308/hjb.19.4.155
Istock, Conrad, A. (2008). "Bacillus: Cellular and Molecular Biology." 117-117.
Kumar, S., & Singh, A. (2015). Biopesticides: present status and the future prospects. J Fertil Pestic, 6(2), 100-29. DOI: https://doi.org/10.4172/2471-2728.1000e129
Lahlali, R., Peng, G., Gossen, B.D., McGregor, L., Yu, F.Q., Hynes, R.K., Hwang, S.F., McDonald, M.R., & Boyetchko, S.M. (2013). Evidence that the biofungicide Serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology, 103(3), 245-54. DOI: https://doi.org/10.1094/PHYTO-06-12-0123-R
Lieckfeldt, E., Samuels, G.J., Nirenberg, H.I., & Petrini, O. (1999). A morphological and molecular perspective of Trichoderma viride: is it one or two species?. Applied and Environmental Microbiology, 65(6), 2418-28. DOI: https://doi.org/10.1128/AEM.65.6.2418-2428.1999
Mahesh, C., Malavath, R.N., Balaguruvaiah, D., & Vidyasagar, G.E. (2018). Genesis, classification and evaluation of some sugarcane growing black soils in semi-arid tropical region of Telangana. Journal of Pharmacognosy and Phytochemistry, 7(3):81-92.
Marin, V.R., Ferrarezi, J.H., Vieira, G., & Sass, D.C. (2019). Recent advances in the biocontrol of Xanthomonas spp. World Journal of Microbiology and Biotechnology, 35(5), 1-1. DOI: https://doi.org/10.1007/s11274-019-2646-5
Miller, G.L. (1959). Use of dinitro salicylic acid reagent for determination of reducing sugar. Anal. Biochem, 31, 426–428. DOI: https://doi.org/10.1021/ac60147a030
Mukherjee, P.K., Horwitz, B.A., Singh, U.S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. Trichoderma biology and applications. Boston: CAB International, 16, 1-9. DOI: https://doi.org/10.1079/9781780642475.0001
Naziya, B., Murali, M., & Amruthesh, K.N. (2020). Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (Syd.) Butler & Bisby. Biomolecules, 10(1), 41. DOI: https://doi.org/10.3390/biom10010041
Nautiyal, C.S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett, 170, 265-270. DOI: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
O’Brien, P.A. (2017). Biological control of plant diseases. Australasian Plant Pathology, 46(4), 293-304. DOI: https://doi.org/10.1007/s13313-017-0481-4
Payne, S.M. (1994). Detection, isolation, and characterization of siderophores. Methods Enzymol. 235, 329–344. DOI: https://doi.org/10.1016/0076-6879(94)35151-1
Pieterse, C.M, Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., & Bakker, P.A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52, 1-12. DOI: https://doi.org/10.1146/annurev-phyto-082712-102340
Prakash, J., & Arora, N.K. (2019). Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech, 9(4):1-9. DOI: https://doi.org/10.1007/s13205-019-1660-5
Ram, R.M., Keswani, C., Bisen, K., Tripathi, R., Singh, S.P., & Singh, H.B. (2018). Biocontrol technology: eco-friendly approaches for sustainable agriculture. InOmics technologies and bio-engineering (pp. 177-190). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-815870-8.00010-3
Ramada, M.H., Lopes, F.Á., Ulhoa, C.J., & do Nascimento Silva, R. (2010). Optimized microplate ?-1, 3-glucanase assay system for Trichoderma spp. screening. Journal of Microbiological Methods, 81(1), 6-10. DOI: https://doi.org/10.1016/j.mimet.2010.01.010
Reithner, B., Ibarra-Laclette, E., Mach, R.L., & Herrera-Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and environmental microbiology, 77(13), 4361-70. DOI: https://doi.org/10.1128/AEM.00129-11
Saravanakumar, K., Arasu, V.S., & Kathiresan, K. (2013). Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat. Bot, 104, 101–105. DOI: https://doi.org/10.1016/j.aquabot.2012.09.001
Scavino, A.F., & Pedraza, R.O. (2013). The role of siderophores in plant growth-promoting bacteria. In Bacteria in agrobiology: crop productivity (pp. 265-285). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-37241-4_11
Schwyn, B., & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(2), 47-56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Singh, B.N., Dwivedi, P., Sarma, B.K., & Singh, H.B. (2019). Trichoderma asperellum T42 induces local defense against Xanthomonas oryzae pv. oryzae under nitrate and ammonium nutrients in tobacco. RSC Advances, 9(68), 39793-810. DOI: https://doi.org/10.1039/C9RA06802C
Soltis, D.E., & Soltis, P.S. (2003). The role of phylogenetics in comparative genetics. Plant Physiology, 132(4), 1790-800. DOI: https://doi.org/10.1104/pp.103.022509
Yousef, C.F., Travieso, M.L., Espinosa, U.M. (2008). Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol. Lett, 288, 118-12. DOI: https://doi.org/10.1111/j.1574-6968.2008.01339.x