Main Article Content

Abstract

The Himalayan birch (Betulautilis D. Don), also known as Bhojpatra in India, is one of the Himalayan region's most important ethnobotanicaltreelinespecies. It aids in the preservation of the Himalaya's fragile environment by preventing soil erosion and conserving the rest of the flora and wildlife below the treelinezone.Betulautilis has been identified for medical (anticancer, anti-HIV, antimicrobial, antioxidant, and anti-inflammatory) and ethno botanical relevance by several ethnic and non-ethnic communities living in the Himalaya and elsewhere, in addition to several ecological benefits.The bark of the Betula tree has long been used to write old manuscripts.It may also be used as a packing material, is waterproof, can be used to roof dwellings, umbrellas, and other items.The historical usage of B. utilis, as well as recent overharvesting to suit community and commercial demands, have put strain on the species natural populations. B. utilis faces numerous threats, including overharvesting, deforestation, erosion, grazing, global warming, and disease attack.Thus, it has been categorized as Critically Endangeredspecies.The main problem of the mountain forestsislack of adequateregenerationprocess. Very little information on population dynamics, regeneration, and physiology and seed germination is available from different parts of the country but no any systematic study has been done so far on multipurpose timberline tree species of Indian Himalayan Region. As a result, it's critical to keep an eye on these sensitive places and keystone species for future changes caused by climate or anthropogenic pressure, especially in locations where baseline data is scarce. The ease and suitability of propagation methods for this species is also not well documented in the literature. With these limitations in mind, the current study aims to document the status of Betulautilis regeneration in the Indian Himalayan region.

Keywords

Betul autilis Critically Endangered Ethnobotanical Indian Himalayan Region Pharmacological activity Regeneration Treeline

Article Details

Author Biographies

Anjana, G.B. Pant National Institute of Himalayan Environment, Himachal Regional Centre, Mohal-Kullu, Himachal Pradesh

G.B. Pant National Institute of Himalayan Environment, Himachal Regional Centre, Mohal Kullu, 175121, Himachal Pradesh

S.S. Samant , Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, Himachal Pradesh

Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, Himachal Pradesh 171013

Mithilesh Singh, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand

G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263643

How to Cite
Anjana, Lata, R., Samant , S., & Singh, M. . (2021). Review on regeneration status of Betulautilis D. Don: A critically endangered multipurpose timber line species in Indian Himalayan region. Environment Conservation Journal, 22(3), 155–167. https://doi.org/10.36953/ECJ.2021.22320

References

  1. Angmo, K., Adhikari, B. S., & Rawat, G. S. (2012). Changing aspects of traditional healthcare system in Western Ladakh, India. Journal of ethnopharmacology, 143(2), 621-630. DOI: https://doi.org/10.1016/j.jep.2012.07.017
  2. Anonymous, (2010). Medicinal plant species of conservation concern identified for Jammu & Kashmir (JK). http://envis.frlht.org – ENVIS Centre on Conservation of Medicinal Plants, FRLHT, Bangalore. http://frlhtenvis.nic.in
  3. Anschlag, K., Broll, G., & Holtmeier, F. K. (2008). Mountain birch seedlings in the treeline ecotone, subarctic Finland: variation in above-and below-ground growth depending on microtopography. Arctic, Antarctic, and Alpine Research, 40(4), 609-616. DOI: https://doi.org/10.1657/1523-0430(07-087)[ANSCHLAG]2.0.CO;2
  4. Baral, S. R., & Kurmi, P. P. (2006). Compendium of medicinal plants in Nepal. Rachana Sharma.
  5. Barbeito, I., Dawes, M. A., Rixen, C., Senn, J., & Bebi, P. (2012). Factors driving mortality and growth at treeline: a 30?year experiment of 92 000 conifers. Ecology, 93(2), 389-401. DOI: https://doi.org/10.1890/11-0384.1
  6. Batllori, E., Camarero, J. J., Ninot, J. M., & Gutiérrez, E. (2009). Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecology and Biogeography, 18(4), 460-472. DOI: https://doi.org/10.1111/j.1466-8238.2009.00464.x
  7. Chen, S. Y., Kuo, S. R., & Chien, C. T. (2008). Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiology, 28(9), 1431-1439. DOI: https://doi.org/10.1093/treephys/28.9.1431
  8. Chhetri, P. K., Bista, R., & Cairns, D. M. (2016). Population structure and dynamics of Abies spectabilis at treeline ecotone of Barun Valley, Makalu Barun National Park, Nepal. Acta Ecologica Sinica, 36(4), 269-274. DOI: https://doi.org/10.1016/j.chnaes.2016.05.003
  9. Dash, S. K. (2013). Weather and climate in high altitudes with special reference to the Himalayas. Climate Change and its Ecological Implications for the Western Himalaya, 128-161.
  10. Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111(3), 775-800. DOI: https://doi.org/10.1007/s10584-011-0201-y
  11. Dutta, P. K., Dutta, B. K., Das, A. K., & Sundriyal, R. C. (2014). Alpine timberline research gap in Himalaya: a literature review. Indian Forester, 140(4), 419-427.
  12. Finch?Savage, W. E., & Leubner?Metzger, G. (2006). Seed dormancy and the control of germination. New phytologist, 171(3), 501-523. DOI: https://doi.org/10.1111/j.1469-8137.2006.01787.x
  13. Gaire, N. P., Koirala, M., Bhuju, D. R., & Borgaonkar, H. P. (2014). Treeline dynamics with climate change at the central Nepal Himalaya. Climate of the Past, 10(4), 1277-1290. DOI: https://doi.org/10.5194/cp-10-1277-2014
  14. Gairola, S., Rawal, R. S., & Todaria, N. P. (2008). Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. African Journal of Plant Science, 2(6), 042-048.
  15. Gewali, M. B., & Awale, S. (2008). Aspects of traditional medicine in Nepal. Japan: Institute of Natural Medicine. University of Toyama.
  16. Ghimire, S. K., Sapkota, I. B., Oli, B. R., & Parajuli, R. R. (2008). Non-timber forest products of Nepal Himalaya: database of some important species found in the mountain protected areas and surrounding regions. WWF Nepal, Kathmandu, Nepal.
  17. Harsch, M. A., & Bader, M. Y. (2011). Treeline form–a potential key to understanding treeline dynamics. Global Ecology and Biogeography, 20(4), 582-596. DOI: https://doi.org/10.1111/j.1466-8238.2010.00622.x
  18. Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are treelines advancing? A global meta?analysis of treeline response to climate warming. Ecology letters, 12(10), 1040-1049. DOI: https://doi.org/10.1111/j.1461-0248.2009.01355.x
  19. Hofgaard, A., Dalen, L., & Hytteborn, H. (2009). Tree recruitment above the treeline and potential for climate?driven treeline change. Journal of Vegetation Science, 20(6), 1133-1144. DOI: https://doi.org/10.1111/j.1654-1103.2009.01114.x
  20. Holtmeier, F. K. (2009). Mountain timberlines: ecology, patchiness, and dynamics (Vol. 36). Springer Science & Business Media. DOI: https://doi.org/10.1007/978-1-4020-9705-8
  21. Holtmeier, F. K., & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global ecology and Biogeography, 14(5), 395-410. DOI: https://doi.org/10.1111/j.1466-822X.2005.00168.x
  22. Holtmeier, F. K., & Broll, G. (2017). Treelines—Approaches at different scales. Sustainability, 9(5), 808. DOI: https://doi.org/10.3390/su9050808
  23. Kabeya, D. (2010). Differentiating between the adverse effects of nutrient-limitation and direct-cold-limitation on tree growth at high altitudes. Arctic, antarctic, and alpine research, 42(4), 430-437. DOI: https://doi.org/10.1657/1938-4246-42.4.430
  24. Kala, C. P. (2018). Uses, Population Status and Management of Betula utilis. Science and Education, 6(3), 79-83.
  25. Körner, C. (2012). Treelines will be understood once the functional difference between a tree and a shrub is. Ambio, 41(3), 197-206. DOI: https://doi.org/10.1007/s13280-012-0313-2
  26. Kumar, M., Paul, Y., & Anand, V. K. (2009). An ethnobotanical study of medicinal plants used by the locals in Kishtwar, Jammu and Kashmir, India. Ethnobotanical leaflets, 2009(10), 5.
  27. Kumar, R., Shamet, G. S., Mehta, H., Alam, N. M., Tomar, J. M. S., Chaturvedi, O. P., & Khajuria, N. (2014). Influence of gibberellic acid and temperature on seed germination in Chilgoza pine (Pinus gerardiana Wall.). Indian Journal of Plant Physiology, 19(4), 363-367. DOI: https://doi.org/10.1007/s40502-014-0119-2
  28. Kumaraswamy, M. V., Kavitha, H. U., & Satish, S. (2008). Antibacterial evaluation and phytochemical analysis of Betula utilis D. Don against some human pathogenic bacteria. World journal of agricultural sciences, 4(5), 661-664.
  29. Lavania, S. K., Singh, R. P., & Singh, V. (2006). Effect of gibberellic acid and pH on seed germination in blue pine (Pinus wallichiana, AB Jacks). Indian Forester, 132(8), 1024-1028.
  30. Lloyd, A. H. (2005). Ecological histories from Alaskan tree lines provide insight into future change. Ecology, 86(7), 1687-1695. DOI: https://doi.org/10.1890/03-0786
  31. Maher, E. L., & Germino, M. J. (2006). Microsite differentiation among conifer species during seedling establishment at alpine treeline. Ecoscience, 13(3), 334-341. DOI: https://doi.org/10.2980/i1195-6860-13-3-334.1
  32. Mahmood, A., Mahmood, A., & Malik, R. N. (2012). Indigenous knowledge of medicinal plants from Leepa valley, Azad Jammu and Kashmir, Pakistan. Journal of ethnopharmacology, 143(1), 338-346. DOI: https://doi.org/10.1016/j.jep.2012.06.046
  33. Mir, N. A., Masoodi, T. H., Sofi, P. A., Mir, S. A., & Malik, A. R. (2018). Determination of effect of stratification duration and GA 3 on germination and growth of Betula utilis D. Don under temperate conditions of Kashmir Himalayas. Indian Journal of Plant Physiology, 23(3), 536-542. DOI: https://doi.org/10.1007/s40502-018-0402-8
  34. Munier, A., Hermanutz, L., Jacobs, J. D., & Lewis, K. (2010). The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment: implications for treeline advance with climate warming. Plant Ecology, 210(1), 19-30. DOI: https://doi.org/10.1007/s11258-010-9724-y
  35. Odland, A. (2010). Importance of mountain height and latitude for the altitudinal distribution limits of vascular plants in Scandinavia: are the mountains high enough?.
  36. Odland, A. (2015). Effect of latitude and mountain height on the timberline (Betula pubescens ssp. czerpanovii) elevation along the central Scandinavian mountain range. Fennia-International Journal of Geography, 193(2), 260-270. DOI: https://doi.org/10.11143/48291
  37. Owen, R.B., Potts, R., andBehrensmeyer, A.K.,2009. Reply to the comment on “Diatomaceous sediments and environmental change in the Pleistocene Olorgesailie Formation, southern Kenya Rift Valley”. Palaeogeography, Palaeoclimatology, Palaeoecology, 282(1-4), 147-148. DOI: https://doi.org/10.1016/j.palaeo.2009.07.010
  38. Paulsen, J., & Körner, C. (2014). A climate-based model to predict potential treeline position around the globe. Alpine Botany, 124(1), 1-12. DOI: https://doi.org/10.1007/s00035-014-0124-0
  39. Phondani, P. C. (2010). A study on prioritization and categorization of specific ailments in different high altitude tribal and non-tribal communities and their traditional plant based treatments in Central Himalaya. Unpublished Ph. D. Thesis submitted to HNB Garhwal Central University, Srinagar (Garhwal). Uttarakhand, India.
  40. Rackova, L., Oblozinsky, M., Kostalova, D., Kettmann, V., & Bezakova, L. (2007). Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. Journal of inflammation, 4(1), 1-7. DOI: https://doi.org/10.1186/1476-9255-4-15
  41. Rai, I. D., Bharti, R. R., Adhikari, B. S., & Rawat, G. S.(2003). Structure and Functioning of Timberline Vegetation in the Western Himalaya: A. High-Altitude Rangelands and their Interfaces in the Hindu Kush Himalayas, 91.
  42. Rokaya, M. B., Münzbergová, Z., & Timsina, B. (2010). Ethnobotanical study of medicinal plants from the Humla district of western Nepal. Journal of Ethnopharmacology, 130(3), 485-504. DOI: https://doi.org/10.1016/j.jep.2010.05.036
  43. Schickhoff, U. (2005). The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. Mountain ecosystems, 275-354. DOI: https://doi.org/10.1007/3-540-27365-4_12
  44. Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., ... & Wedegärtner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6(1), 245-265. DOI: https://doi.org/10.5194/esd-6-245-2015
  45. Selvam, A. (2008). Inventory of vegetable crude drug samples housed in botanical survey of India, Howrah. Pharmacognosy Reviews, 2(3), 61.
  46. Sharma, N. (2017). Conservation and utilization of medicinal and aromatic plants in Dhauladhar mountain range of Himachal Pradesh.
  47. Sharma, S. K., & Rana, J. C. (2013). Biodiversity (Plants/Animals/Microbes/Birds): Status, Endemism, Threatened Species. Climate Change and Its Ecological Implications for the Western Himalaya, 180-216.
  48. Shaw, K., Roy, S. & Wilson, B.,(2014). Betulautilis. The IUCN Red List of Threatened Species, 54.
  49. Shrestha, B. B., Ghimire, B., Lekhak, H. D., & Jha, P. K. (2007). Regeneration of treeline birch (Betula utilis D. Don) forest in a trans-Himalayan dry valley in central Nepal. Mountain Research and Development, 27(3), 259-267. DOI: https://doi.org/10.1659/mrdd.0784
  50. Singh, S. P., & Thadani, R. (2015). Complexities and controversies in Himalayan research: a call for collaboration and rigor for better data. Mountain Research and Development, 35(4), 401-409. DOI: https://doi.org/10.1659/MRD-JOURNAL-D-15-00045
  51. Singh, S., Yadav, S., Sharma, P., & Thapliyal, A. (2012). Betula utilis: A potential herbal medicine. International Journal of Pharmaceutical and Biological Archives, 3(3), 493-498.
  52. Smith, W. K., Germino, M. J., Johnson, D. M., & Reinhardt, K. (2009). The altitude of alpine treeline: a bellwether of climate change effects. The Botanical Review, 75(2), 163-190. DOI: https://doi.org/10.1007/s12229-009-9030-3
  53. Sofi, P., & Bhardwaj, S. D. (2008). Effect of seed weight and presowing treatments for germination and seedling growth of Cedrus deodara. SKUAST Journal of Research, 10, 156-160.
  54. Thapliyal, R. C., & Gupta, B. N. (1980). Effect of seed source and stratification on the germination of deodar seed [cedar]. Seed Science and Technology (Netherlands).
  55. Wang, J. H., Baskin, C. C., Chen, W., & Du, G. Z. (2010). Variation in seed germination between populations of five sub-alpine woody species from eastern Qinghai-Tibet Plateau following dry storage at low temperatures. Ecological Research, 25(1), 195-203. DOI: https://doi.org/10.1007/s11284-009-0643-0
  56. Zaki, M., Sofi, M. S., & Kaloo, Z. A. (2011). A reproducible protocol for raising clonal plants from leaf segments excised from mature trees of Betula utilis a threatened tree species of Kashmir Himalayas. International Multidisciplinary Research Journal, 1(5).
  57. Zhang, B., & Yao, Y. (2016). Implications of mass elevation effect for the altitudinal patterns of global ecology. Journal of Geographical Sciences, 26(7), 871-877. DOI: https://doi.org/10.1007/s11442-016-1303-2
  58. Zurbriggen, N., Hättenschwiler, S., Frei, E. S., Hagedorn, F., & Bebi, P. (2013). Performance of germinating tree seedlings below and above treeline in the Swiss Alps. Plant Ecology, 214(3), 385-396. DOI: https://doi.org/10.1007/s11258-013-0176-z
  59. Zurick, D., & Pacheco, J. (2006). Illustrierter Atlas des Himalaya.