Main Article Content
Abstract
The biofilms comprise a population of bacteria with a varying variety of polysaccharides, proteins and DNA. Bacterial multi-phase defence consists of low antibiotic absorption, sluggish replication in the biofilm, and adaptive stress response. This antibiotic resistance produced by biofilm makes it challenging to deal with bacteria with effective antibiotic dosages in planktonic forms. A crucial component in the virulent colonisation of live tissues or medical equipment is having favourable situation for bacteria to create biofilms. The high level of recalcitrance in biofilm populations is due to several molecular pathways. As the stock of effective antibiotics is depleting, bacterial resistance is becoming an increasing risk to public health. As a result, new antibiotics are urgently needed. This review includes current empirical findings related to antibiotic resistance in biofilms and summarises the biofilm resistance and tolerance mechanisms.
Keywords
Article Details
Copyright (c) 2021 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial agents and chemotherapy, 44(7), 1818-1824. DOI: https://doi.org/10.1128/AAC.44.7.1818-1824.2000
- Bagge, N., Hentzer, M., Andersen, J. B., Ciofu, O., Givskov, M., & Høiby, N. (2004). Dynamics and spatial distribution of ?-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrobial agents and chemotherapy, 48(4), 1168-1174. DOI: https://doi.org/10.1128/AAC.48.4.1168-1174.2004
- Barge, N., Schuster, M., Hentzer, M., Ciofu, O., Givskov, M., Greenberg, E. P., & Høiby, N. (2004). Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and ?-lactamase and alginate production. Antimicrobial agents and chemotherapy, 48(4), 1175-1187. DOI: https://doi.org/10.1128/AAC.48.4.1175-1187.2004
- Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current opinion in biotechnology, 19(3), 260-265. DOI: https://doi.org/10.1016/j.copbio.2008.05.006
- Burmolle, M., Thomsen, T. R., Fazli, M., Dige, I., Christensen, L., Homøe, P., & Bjarnsholt, T. (2010). Biofilms in chronic infections–a matter of opportunity–monospecies biofilms in multispecies infections. FEMS Immunology & Medical Microbiology, 59(3), 324-336. DOI: https://doi.org/10.1111/j.1574-695X.2010.00714.x
- Chiang, W. C., Nilsson, M., Jensen, P. Ø., Høiby, N., Nielsen, T. E., Givskov, M., & Tolker-Nielsen, T. (2013). Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrobial agents and chemotherapy, 57(5), 2352-2361. DOI: https://doi.org/10.1128/AAC.00001-13
- Chrisman, C. J., Albuquerque, P., Guimaraes, A. J., Nieves, E., & Casadevall, A. (2011). Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathogens, 7(5), e1002047. DOI: https://doi.org/10.1371/journal.ppat.1002047
- Costerton, J. W., Montanaro, L., & Arciola, C. R. (2005). Biofilm in implant infections: its production and regulation. The International journal of artificial organs, 28(11), 1062-1068. DOI: https://doi.org/10.1177/039139880502801103
- Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging infectious diseases, 7(2), 277. DOI: https://doi.org/10.3201/eid0702.010226
- Dörr, T., Vuli?, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8(2), e1000317. DOI: https://doi.org/10.1371/journal.pbio.1000317
- Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192. DOI: https://doi.org/10.1016/j.heliyon.2019.e02192
- Gilbert, P., Maira-Litran, T., McBain, A. J., Rickard, A. H., & Whyte, F. W. (2002). The physiology and collective recalcitrance of microbial biofilm communities. DOI: https://doi.org/10.1016/S0065-2911(02)46005-5
- Grainha, T., Magalhães, A. P., Melo, L. D., & Pereira, M. O. (2020). Pitfalls associated with discriminating mixed-species biofilms by flow cytometry. Antibiotics, 9(11), 741. DOI: https://doi.org/10.3390/antibiotics9110741
- Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS microbiology reviews, 41(3), 276-301. DOI: https://doi.org/10.1093/femsre/fux010
- Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J., & Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrobial agents and chemotherapy, 53(6), 2253-2258. DOI: https://doi.org/10.1128/AAC.00043-09
- Hathroubi, S., Mekni, M. A., Domenico, P., Nguyen, D., & Jacques, M. (2017). Biofilms: microbial shelters against antibiotics. Microbial Drug Resistance, 23(2), 147-156. DOI: https://doi.org/10.1089/mdr.2016.0087
- Johnson, L., Mulcahy, H., Kanevets, U., Shi, Y., & Lewenza, S. (2012). Surface-localised spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. Journal of bacteriology, 194(4), 813-826. DOI: https://doi.org/10.1128/JB.05230-11
- Jolivet-Gougeon, A., & Bonnaure-Mallet, M. (2014). Biofilms as a mechanism of bacterial resistance. Drug Discovery Today: Technologies, 11, 49-56. DOI: https://doi.org/10.1016/j.ddtec.2014.02.003
- Karthik, L., Kumar, G., Keswani, T., Bhattacharyya, A., Chandar, S. S., & Rao, K. B. (2014). Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PloS one, 9(3), e90972. DOI: https://doi.org/10.1371/journal.pone.0090972
- Keren, I., Mulcahy, L. R., & Lewis, K. (2012). Persister eradication: lessons from the world of natural products. Methods in enzymology, 517, 387-406. DOI: https://doi.org/10.1016/B978-0-12-404634-4.00019-X
- Kong, E. F., Tsui, C., Kucharíková, S., Andes, D., Van Dijck, P., & Jabra-Rizk, M. A. (2016). Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio, 7(5). DOI: https://doi.org/10.1128/mBio.01365-16
- Lewenza, S. (2013). Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Frontiers in microbiology, 4, 21. DOI: https://doi.org/10.3389/fmicb.2013.00021
- Madsen, J. S., Burmølle, M., Hansen, L. H., & Sørensen, S. J. (2012). The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology & Medical Microbiology, 65(2), 183-195. DOI: https://doi.org/10.1111/j.1574-695X.2012.00960.x
- Mah, T. F. (2012). Biofilm-specific antibiotic resistance. Future microbiology, 7(9), 1061-1072. DOI: https://doi.org/10.2217/fmb.12.76
- Mangwani, N., Kumari, S., & Das, S. (2016). Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnology and Genetic Engineering Reviews, 32(1-2), 43-73. DOI: https://doi.org/10.1080/02648725.2016.1196554
- Nadell, C. D., Drescher, K., Wingreen, N. S., & Bassler, B. L. (2015). Extracellular matrix structure governs invasion resistance in bacterial biofilms. The ISME journal, 9(8), 1700-1709. DOI: https://doi.org/10.1038/ismej.2014.246
- Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., ... & Singh, P. K. (2011). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334(6058), 982-986. DOI: https://doi.org/10.1126/science.1211037
- Öner, E. T. (2013). Microbial production of extracellular polysaccharides from biomass. In Pretreatment techniques for biofuels and biorefineries (pp. 35-56). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-32735-3_2
- Perez, A. C., Pang, B., King, L. B., Tan, L., Murrah, K. A., Reimche, J. L., & Swords, W. E. (2014). Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathogens and disease, 70(3), 280-288. DOI: https://doi.org/10.1111/2049-632X.12129
- Peters, B. M., Ovchinnikova, E. S., Krom, B. P., Schlecht, L. M., Zhou, H., Hoyer, L. L., & Shirtliff, M. E. (2012). Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology, 158(Pt 12), 2975. DOI: https://doi.org/10.1099/mic.0.062109-0
- Poole, K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 67(9), 2069-2089. DOI: https://doi.org/10.1093/jac/dks196
- Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T., Phipps, R. K., Christensen, K. B., Jensen, P. O., & Givskov, M. (2005). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 151(5), 1325-1340. DOI: https://doi.org/10.1099/mic.0.27715-0
- RegBott T. (2011). Industrial biofouling. In: Biofilms in Industry. Edgbaston, UK: Elsevier Inc.; pp. 181-201. DOI: https://doi.org/10.1016/B978-0-444-53224-4.10007-5
- Robertson, S. R., & McLean, R. J. (2015). Beneficial biofilms. AIMS Bioengineering, 2(4), 437-448. DOI: https://doi.org/10.3934/bioeng.2015.4.437
- Roman?, A. M. (2010). Freshwater biofilms. Biofouling. Wiley-Blackwell, Oxford, 137-153. DOI: https://doi.org/10.1002/9781444315462.ch10
- Ryan, R. P., Fouhy, Y., Garcia, B. F., Watt, S. A., Niehaus, K., Yang, L., & Dow, J. M. (2008). Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Molecular microbiology, 68(1), 75-86. DOI: https://doi.org/10.1111/j.1365-2958.2008.06132.x
- Sabater, S., Guasch, H., Ricart, M., Romaní, A., Vidal, G., Klünder, C., & Schmitt-Jansen, M. (2007). Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and bioanalytical chemistry, 387(4), 1425-1434. DOI: https://doi.org/10.1007/s00216-006-1051-8
- Sambanthamoorthy, K., Luo, C., Pattabiraman, N., Feng, X., Koestler, B., Waters, C. M., & Palys, T. J. (2014). Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling, 30(1), 17-28. DOI: https://doi.org/10.1080/08927014.2013.832224
- Sehrawat, S., Reddy, P. B., Rajasagi, N., Suryawanshi, A., Hirashima, M., & Rouse, B. T. (2010). Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8+ T cell response. PLoS Pathogens, 6(5), e1000882. DOI: https://doi.org/10.1371/journal.ppat.1000882
- Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1-10. DOI: https://doi.org/10.1186/s13756-019-0533-3
- Shenkutie, A. M., Yao, M. Z., Siu, G. K. H., Wong, B. K. C., & Leung, P. H. M. (2020). Biofilm-induced antibiotic resistance in clinical acinetobacter baumannii isolates. Antibiotics, 9(11), 817. DOI: https://doi.org/10.3390/antibiotics9110817
- Simon, M., & Grossart, H. P., Schweitzer, B., and Ploug, H. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology, 28, 175-211. DOI: https://doi.org/10.3354/ame028175
- Simonetti, O., Cirioni, O., Mocchegiani, F., Cacciatore, I., Silvestri, C., Baldassarre, L., & Offidani, A. (2013). The efficacy of the quorum sensing inhibitor FS8 and tigecycline in preventing prosthesis biofilm in an animal model of staphylococcal infection. International journal of molecular sciences, 14(8), 16321-16332. DOI: https://doi.org/10.3390/ijms140816321
- Sleytr, U. B., Schuster, B., Egelseer, E. M., & Pum, D. (2014). S-layers: principles and applications. FEMS microbiology reviews, 38(5), 823-864. DOI: https://doi.org/10.1111/1574-6976.12063
- Stewart, P. S., Zhang, T., Xu, R., Pitts, B., Walters, M. C., Roe, F., & Moter, A. (2016). Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms and Microbiomes, 2(1), 1-8. DOI: https://doi.org/10.1038/npjbiofilms.2016.12
- Strugeon, E., Tilloy, V., Ploy, M. C., & Da Re, S. (2016). The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilms. MBio, 7(4). DOI: https://doi.org/10.1128/mBio.00868-16
- Sugano, M., Morisaki, H., Negishi, Y., Endo-Takahashi, Y., Kuwata, H., Miyazaki, T., & Yamamoto, M. (2016). Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms. Journal of liposome research, 26(2), 156-162.
- Teschler, J. K., Zamorano-Sánchez, D., Utada, A. S., Warner, C. J., Wong, G. C., Linington, R. G., & Yildiz, F. H. (2015). Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology, 13(5), 255-268. DOI: https://doi.org/10.1038/nrmicro3433
- Tseng, B. S., Zhang, W., Harrison, J. J., Quach, T. P., Song, J. L., Penterman, J., ... & Parsek, M. R. (2013). The extracellular matrix protects P seudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environmental microbiology, 15(10), 2865-2878. DOI: https://doi.org/10.1111/1462-2920.12155
- Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C., & Arenas, J. (2021). Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics, 10(1), 3. DOI: https://doi.org/10.3390/antibiotics10010003
- Wilton, M., Charron-Mazenod, L., Moore, R., & Lewenza, S. (2016). Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 60(1), 544-553. DOI: https://doi.org/10.1128/AAC.01650-15
- Wimpenny, J., Manz, W., & Szewzyk, U. (2000). Heterogeneity in biofilms. FEMS microbiology reviews, 24(5), 661-671. DOI: https://doi.org/10.1111/j.1574-6976.2000.tb00565.x
- Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Review Microbiology, 14(9), 563-575. DOI: https://doi.org/10.1038/nrmicro.2016.94
- Zhang, L., & Mah, T. F. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of bacteriology, 190(13), 4447-4452. DOI: https://doi.org/10.1128/JB.01655-07
References
Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial agents and chemotherapy, 44(7), 1818-1824. DOI: https://doi.org/10.1128/AAC.44.7.1818-1824.2000
Bagge, N., Hentzer, M., Andersen, J. B., Ciofu, O., Givskov, M., & Høiby, N. (2004). Dynamics and spatial distribution of ?-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrobial agents and chemotherapy, 48(4), 1168-1174. DOI: https://doi.org/10.1128/AAC.48.4.1168-1174.2004
Barge, N., Schuster, M., Hentzer, M., Ciofu, O., Givskov, M., Greenberg, E. P., & Høiby, N. (2004). Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and ?-lactamase and alginate production. Antimicrobial agents and chemotherapy, 48(4), 1175-1187. DOI: https://doi.org/10.1128/AAC.48.4.1175-1187.2004
Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current opinion in biotechnology, 19(3), 260-265. DOI: https://doi.org/10.1016/j.copbio.2008.05.006
Burmolle, M., Thomsen, T. R., Fazli, M., Dige, I., Christensen, L., Homøe, P., & Bjarnsholt, T. (2010). Biofilms in chronic infections–a matter of opportunity–monospecies biofilms in multispecies infections. FEMS Immunology & Medical Microbiology, 59(3), 324-336. DOI: https://doi.org/10.1111/j.1574-695X.2010.00714.x
Chiang, W. C., Nilsson, M., Jensen, P. Ø., Høiby, N., Nielsen, T. E., Givskov, M., & Tolker-Nielsen, T. (2013). Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrobial agents and chemotherapy, 57(5), 2352-2361. DOI: https://doi.org/10.1128/AAC.00001-13
Chrisman, C. J., Albuquerque, P., Guimaraes, A. J., Nieves, E., & Casadevall, A. (2011). Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathogens, 7(5), e1002047. DOI: https://doi.org/10.1371/journal.ppat.1002047
Costerton, J. W., Montanaro, L., & Arciola, C. R. (2005). Biofilm in implant infections: its production and regulation. The International journal of artificial organs, 28(11), 1062-1068. DOI: https://doi.org/10.1177/039139880502801103
Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging infectious diseases, 7(2), 277. DOI: https://doi.org/10.3201/eid0702.010226
Dörr, T., Vuli?, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8(2), e1000317. DOI: https://doi.org/10.1371/journal.pbio.1000317
Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192. DOI: https://doi.org/10.1016/j.heliyon.2019.e02192
Gilbert, P., Maira-Litran, T., McBain, A. J., Rickard, A. H., & Whyte, F. W. (2002). The physiology and collective recalcitrance of microbial biofilm communities. DOI: https://doi.org/10.1016/S0065-2911(02)46005-5
Grainha, T., Magalhães, A. P., Melo, L. D., & Pereira, M. O. (2020). Pitfalls associated with discriminating mixed-species biofilms by flow cytometry. Antibiotics, 9(11), 741. DOI: https://doi.org/10.3390/antibiotics9110741
Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS microbiology reviews, 41(3), 276-301. DOI: https://doi.org/10.1093/femsre/fux010
Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J., & Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrobial agents and chemotherapy, 53(6), 2253-2258. DOI: https://doi.org/10.1128/AAC.00043-09
Hathroubi, S., Mekni, M. A., Domenico, P., Nguyen, D., & Jacques, M. (2017). Biofilms: microbial shelters against antibiotics. Microbial Drug Resistance, 23(2), 147-156. DOI: https://doi.org/10.1089/mdr.2016.0087
Johnson, L., Mulcahy, H., Kanevets, U., Shi, Y., & Lewenza, S. (2012). Surface-localised spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. Journal of bacteriology, 194(4), 813-826. DOI: https://doi.org/10.1128/JB.05230-11
Jolivet-Gougeon, A., & Bonnaure-Mallet, M. (2014). Biofilms as a mechanism of bacterial resistance. Drug Discovery Today: Technologies, 11, 49-56. DOI: https://doi.org/10.1016/j.ddtec.2014.02.003
Karthik, L., Kumar, G., Keswani, T., Bhattacharyya, A., Chandar, S. S., & Rao, K. B. (2014). Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PloS one, 9(3), e90972. DOI: https://doi.org/10.1371/journal.pone.0090972
Keren, I., Mulcahy, L. R., & Lewis, K. (2012). Persister eradication: lessons from the world of natural products. Methods in enzymology, 517, 387-406. DOI: https://doi.org/10.1016/B978-0-12-404634-4.00019-X
Kong, E. F., Tsui, C., Kucharíková, S., Andes, D., Van Dijck, P., & Jabra-Rizk, M. A. (2016). Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio, 7(5). DOI: https://doi.org/10.1128/mBio.01365-16
Lewenza, S. (2013). Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Frontiers in microbiology, 4, 21. DOI: https://doi.org/10.3389/fmicb.2013.00021
Madsen, J. S., Burmølle, M., Hansen, L. H., & Sørensen, S. J. (2012). The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology & Medical Microbiology, 65(2), 183-195. DOI: https://doi.org/10.1111/j.1574-695X.2012.00960.x
Mah, T. F. (2012). Biofilm-specific antibiotic resistance. Future microbiology, 7(9), 1061-1072. DOI: https://doi.org/10.2217/fmb.12.76
Mangwani, N., Kumari, S., & Das, S. (2016). Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnology and Genetic Engineering Reviews, 32(1-2), 43-73. DOI: https://doi.org/10.1080/02648725.2016.1196554
Nadell, C. D., Drescher, K., Wingreen, N. S., & Bassler, B. L. (2015). Extracellular matrix structure governs invasion resistance in bacterial biofilms. The ISME journal, 9(8), 1700-1709. DOI: https://doi.org/10.1038/ismej.2014.246
Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., ... & Singh, P. K. (2011). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334(6058), 982-986. DOI: https://doi.org/10.1126/science.1211037
Öner, E. T. (2013). Microbial production of extracellular polysaccharides from biomass. In Pretreatment techniques for biofuels and biorefineries (pp. 35-56). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-32735-3_2
Perez, A. C., Pang, B., King, L. B., Tan, L., Murrah, K. A., Reimche, J. L., & Swords, W. E. (2014). Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathogens and disease, 70(3), 280-288. DOI: https://doi.org/10.1111/2049-632X.12129
Peters, B. M., Ovchinnikova, E. S., Krom, B. P., Schlecht, L. M., Zhou, H., Hoyer, L. L., & Shirtliff, M. E. (2012). Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology, 158(Pt 12), 2975. DOI: https://doi.org/10.1099/mic.0.062109-0
Poole, K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 67(9), 2069-2089. DOI: https://doi.org/10.1093/jac/dks196
Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T., Phipps, R. K., Christensen, K. B., Jensen, P. O., & Givskov, M. (2005). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 151(5), 1325-1340. DOI: https://doi.org/10.1099/mic.0.27715-0
RegBott T. (2011). Industrial biofouling. In: Biofilms in Industry. Edgbaston, UK: Elsevier Inc.; pp. 181-201. DOI: https://doi.org/10.1016/B978-0-444-53224-4.10007-5
Robertson, S. R., & McLean, R. J. (2015). Beneficial biofilms. AIMS Bioengineering, 2(4), 437-448. DOI: https://doi.org/10.3934/bioeng.2015.4.437
Roman?, A. M. (2010). Freshwater biofilms. Biofouling. Wiley-Blackwell, Oxford, 137-153. DOI: https://doi.org/10.1002/9781444315462.ch10
Ryan, R. P., Fouhy, Y., Garcia, B. F., Watt, S. A., Niehaus, K., Yang, L., & Dow, J. M. (2008). Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Molecular microbiology, 68(1), 75-86. DOI: https://doi.org/10.1111/j.1365-2958.2008.06132.x
Sabater, S., Guasch, H., Ricart, M., Romaní, A., Vidal, G., Klünder, C., & Schmitt-Jansen, M. (2007). Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and bioanalytical chemistry, 387(4), 1425-1434. DOI: https://doi.org/10.1007/s00216-006-1051-8
Sambanthamoorthy, K., Luo, C., Pattabiraman, N., Feng, X., Koestler, B., Waters, C. M., & Palys, T. J. (2014). Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling, 30(1), 17-28. DOI: https://doi.org/10.1080/08927014.2013.832224
Sehrawat, S., Reddy, P. B., Rajasagi, N., Suryawanshi, A., Hirashima, M., & Rouse, B. T. (2010). Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8+ T cell response. PLoS Pathogens, 6(5), e1000882. DOI: https://doi.org/10.1371/journal.ppat.1000882
Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 1-10. DOI: https://doi.org/10.1186/s13756-019-0533-3
Shenkutie, A. M., Yao, M. Z., Siu, G. K. H., Wong, B. K. C., & Leung, P. H. M. (2020). Biofilm-induced antibiotic resistance in clinical acinetobacter baumannii isolates. Antibiotics, 9(11), 817. DOI: https://doi.org/10.3390/antibiotics9110817
Simon, M., & Grossart, H. P., Schweitzer, B., and Ploug, H. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology, 28, 175-211. DOI: https://doi.org/10.3354/ame028175
Simonetti, O., Cirioni, O., Mocchegiani, F., Cacciatore, I., Silvestri, C., Baldassarre, L., & Offidani, A. (2013). The efficacy of the quorum sensing inhibitor FS8 and tigecycline in preventing prosthesis biofilm in an animal model of staphylococcal infection. International journal of molecular sciences, 14(8), 16321-16332. DOI: https://doi.org/10.3390/ijms140816321
Sleytr, U. B., Schuster, B., Egelseer, E. M., & Pum, D. (2014). S-layers: principles and applications. FEMS microbiology reviews, 38(5), 823-864. DOI: https://doi.org/10.1111/1574-6976.12063
Stewart, P. S., Zhang, T., Xu, R., Pitts, B., Walters, M. C., Roe, F., & Moter, A. (2016). Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms and Microbiomes, 2(1), 1-8. DOI: https://doi.org/10.1038/npjbiofilms.2016.12
Strugeon, E., Tilloy, V., Ploy, M. C., & Da Re, S. (2016). The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilms. MBio, 7(4). DOI: https://doi.org/10.1128/mBio.00868-16
Sugano, M., Morisaki, H., Negishi, Y., Endo-Takahashi, Y., Kuwata, H., Miyazaki, T., & Yamamoto, M. (2016). Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms. Journal of liposome research, 26(2), 156-162.
Teschler, J. K., Zamorano-Sánchez, D., Utada, A. S., Warner, C. J., Wong, G. C., Linington, R. G., & Yildiz, F. H. (2015). Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology, 13(5), 255-268. DOI: https://doi.org/10.1038/nrmicro3433
Tseng, B. S., Zhang, W., Harrison, J. J., Quach, T. P., Song, J. L., Penterman, J., ... & Parsek, M. R. (2013). The extracellular matrix protects P seudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environmental microbiology, 15(10), 2865-2878. DOI: https://doi.org/10.1111/1462-2920.12155
Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C., & Arenas, J. (2021). Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics, 10(1), 3. DOI: https://doi.org/10.3390/antibiotics10010003
Wilton, M., Charron-Mazenod, L., Moore, R., & Lewenza, S. (2016). Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 60(1), 544-553. DOI: https://doi.org/10.1128/AAC.01650-15
Wimpenny, J., Manz, W., & Szewzyk, U. (2000). Heterogeneity in biofilms. FEMS microbiology reviews, 24(5), 661-671. DOI: https://doi.org/10.1111/j.1574-6976.2000.tb00565.x
Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Review Microbiology, 14(9), 563-575. DOI: https://doi.org/10.1038/nrmicro.2016.94
Zhang, L., & Mah, T. F. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of bacteriology, 190(13), 4447-4452. DOI: https://doi.org/10.1128/JB.01655-07